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Recurrent neural networks (RNNs) are powerful dynamical models, widely used in machine learn-
ing (ML) for processing sequential data, and also in neuroscience, to understand the emergent
properties of networks of real neurons. Prior theoretical work in understanding the properties of
RNNs has focused on models with additive interactions. However, real neurons can have gating i.e.
multiplicative interactions, and gating is also a central feature of the best performing RNNs in ma-
chine learning. Here, we develop a dynamical mean-field theory (DMFT) to study the consequences
of gating in RNNs. We use random matrix theory to show how gating robustly produces marginal
stability and line attractors – important mechanisms for biologically-relevant computations requiring
long memory. The long-time behavior of the gated network is studied using its Lyapunov spectrum,
and the DMFT is used to provide a novel analytical expression for the maximum Lyapunov exponent
demonstrating its close relation to relaxation time of the dynamics. Gating is also shown to give
rise to a novel, discontinuous transition to chaos, where the proliferation of critical points (topo-
logical complexity) is decoupled from the appearance of chaotic dynamics (dynamical complexity),
contrary to a seminal result for additive RNNs. Critical surfaces and regions of marginal stability in
the parameter space are indicated in phase diagrams, thus providing a map for principled parameter
choices for ML practitioners. Finally, we develop a field-theory for gradients that arise in training,
by incorporating the adjoint sensitivity framework from control theory in the DMFT. This paves
the way for the use of powerful field-theoretic techniques to study training/gradients in large RNNs.

I. INTRODUCTION

Recurrent neural networks (RNNs) are powerful dy-
namical systems that can represent a rich repertoire of
trajectories; in fact, they are known to be Turing com-
plete [1]. In modern machine learning, RNNs are used
to learn complex dynamics from data with rich sequen-
tial/temporal structure such as speech [2, 3], turbulent
flows [4–6] or text sequences [7]. RNNs are also influ-
ential in neuroscience as models to study the collective
behavior of a large network of neurons. For instance,
they have been used to explain the temporally-irregular
fluctuations observed in cortical networks [8, 9] (and ref-
erences therein), and how the motor-cortex network gen-
erates movement sequences [10, 11].

Classical RNN models typically involve units that in-
teract with each other in an additive fashion – i.e. each
unit integrates a weighted sum of the output of the rest
of the network. However, researchers in machine learning
have empirically found that RNNs with gating – a form
of multiplicative interaction – can be trained to perform
significantly more complex tasks than classical RNNs [7].
This is attributed to the superior ability of gated RNNs
to learn long-time dependencies in data [12, 13]. Gat-
ing interactions between neurons are also more realistic
from a biophysical perspective due to mechanisms such
as shunting inhibition [14]. When single-neuron models
are endowed with more realistic conductance dynamics,
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the effective interactions at the network level have gat-
ing effects, and this confers robustness to time-warped
inputs [15]. Thus, RNNs with gating interactions not
only have superior information processing capabilities,
but they also embody a salient feature found in real neu-
rons.

Prior theoretical work on understanding the dynam-
ics of RNNs has mostly focused on RNNs with additive
interactions. The original work by Crisanti et al. [16]
identified a phase transition in the autonomous dynamics
of randomly connected RNNs from quiescence to chaos,
when the variance of the coupling weights exceeded a
critical value. Subsequent work has extended this anal-
ysis to cases where the random connectivity additionally
has correlations [17], a low-rank structured component
[18, 19], strong self-interaction [20] and heterogeneous
variance across blocks [21]. The role of sparse connectiv-
ity, spiking dynamics and the single-neuron nonlinearity
was studied in [9]. The effect of a Gaussian noise in-
put was analysed in [22]. With regard to training on
tasks, recent theoretical work has focused on the corre-
spondence between classical additive RNNs and kernel
methods [23, 24].

In this work, we study the consequences of gating inter-
actions on the dynamics of RNNs. We introduce a gated
RNN model that naturally extends the classical RNN by
augmenting it with two kinds of gating interactions: i) an
update gate that acts like an adaptive time-constant and
ii) an output gate which modulates the relative weight
of the output of a neuron. The choice of these forms for
gates are inspired from single-neuron conductance dy-
namics [15, 25] and retain the most salient aspects of the
gated RNNs in machine learning. Our gated RNN re-
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duces to the classical RNN ([16, 26]) when the gates are
open, and is closely related to the state-of-the-art gated
RNNs in machine learning when the dynamics are dis-
cretized.

We develop a dynamical mean-field theory (DMFT)
for the gated RNN based on the Martin-Siggia-Rose-De
Dominicis-Jansen (MSRDJ) formalism [8, 22, 27–31] and
use it to show how gating can produce substanially richer
dynamical phases compared to additive RNNs. Identify-
ing the different dynamical phases is not only useful in
characterizing the expressivity of RNNs, but it has signif-
icant implications for training success in machine learn-
ing tasks – indeed, the regime chosen for initialization is
known to be one of the most important factors deciding
the outcome of training [32]. Furthermore, for very large
networks there are regimes in which parameters barely
change from their initial values during training[33, 34].
Thus the phase diagram is of both theoretical and prac-
tical interest (in choosing initial parameters).

In mapping out the phase diagram, we identify criti-
cal surfaces in the parameter space where the dynamics
transition from stationary to chaotic activity. Studying
the transition to chaos is not only interesting in under-
standing the dynamics of large complex networks, but
it is also of significant practical interest since training
RNNs works best near critical lines – an empirical phe-
nomenon often referred to as “edge of chaos” hypothesis
[10, 35–37]. This is presumably due to the presence of
long timescales in the dynamics close to chaotic tran-
sitions. However, we find that not all critical surfaces
might be beneficial – indeed, we identify a new, discon-
tinuous transition to chaos produced by gating, where
long timescales are absent, and the proliferation of criti-
cal points is decoupled with the appearance of a chaotic
attractor; this is in contrast to the interesting result of
Wainrib & Touboul [38], which showed a tight link be-
tween the two phenomena in classical RNNs. We study
this new chaotic transition in detail using numerical and
analytical methods.

We combine tools from random matrix theory with the
DMFT to study how the gating shapes the timescales
in local dynamics. We show that gating produces slow
modes, marginal stability and line attractors . These line
attractors are widely-studied mechanisms that are criti-
cal for computations involving long memory [39–42], and
to date, models generating line attractors require fine-
tuning. Here, we show that gating can robustly generate
line attractors.

Finally, we develop a DMFT for gradients that arise
in training RNNs by incorporating the adjoint formal-
ism from control theory [43] in the MSRDJ field theory
formalism. This allows using the powerful field-theoretic
techniques developed for the DMFT – typically used to
study forward dynamics – to investigate gradients and
training in large RNNs. This potentially opens a novel
direction to incorporate statistical physics tools in the
theoretical analysis of machine learning models and bio-
logical systems that organize based on gradient informa-

tion. The techniques introduced here naturally generalize
to other forms of gating [44], and thus provide a princi-
pled way to assess the effect that architectural choices
have on dynamics and gradients. We provide a brief list
of the main results below:

A. Summary of main results

- We develop a DMFT for the gated RNN based on
the MSRDJ formalism [Sec. III] and use it show
how gating can produce substantially richer dy-
namical regimes compared to additive RNNs.

- We show how gates shape the local dynamics
through their effect on the Jacobian spectrum in
[Sec. IV B]. To do this, we combine random ma-
trix theory with the DMFT to derive an expression
for the spectral support of the Jacobian explicitly
showing its dependence on the gates [Sec. IV A].

- We show how the update gate produces slow modes
in the dynamics [Sec. IV B] and in the limit, it can
poise the system at a marginally stable point.

- We study marginal stability and the resulting line
attractor dynamics in [Sec. V]. We show that gat-
ing can robustly generate line attractors, where in-
puts along the line-attractor manifold are retained
for long times and inputs not aligned with the man-
ifold decay with a spectrum of timescales.

- We study how gates shape the long-time dynamics
via the Lyapunov spectrum [Sec. VI A] and derive
a DMFT prediction for the maximum Lyapunov
exponent showing the role of the gates [Sec. VI B].
This corroborates the local picture of the dynamics
that emerges from Sec. IV B.

- We provide an alternate derivation of the maximum
Lyapunov exponent using random matrix theory
[Sec. VI C], which explicitly shows the intimate link
between the Lyapunov exponent and the relaxation
time of the dynamics.

- Gating is shown to give rise to a novel, discon-
tinuous transition to chaos where the appearance
of chaotic dynamics is decoupled from the pro-
liferation of unstable fixed-points [Sec. VII]. We
show that this transition is characterized by a state
where a stable fixed-point coexists with chaotic dy-
namics. This state displays long-lived chaotic tran-
sients that grow with system size [Sec. VII C].

- Biases in the nonlinearities are shown to produce
non-trivial fixed-points – useful for memory func-
tions – and control the transition to chaos via their
effect on the Jacobian spectrum [Sec. VIII ].

- In [Sec. IX] we summarize the dynamical regimes,
critical lines, and the regions of marginal stability
by constructing phase diagrams for the gated RNN.
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- In [Sec. X] we extend the adjoint sensitivity for-
malism to develop a DMFT for gradients that arise
while training RNNs, thus enabling a way for field-
theoretic analysis of gradients. As a example ap-
plication, the DMFT for the gradients is used to
provide predictions for the variance of the gradi-
ents in large RNNs at initialization.

II. A RECURRENT NEURAL NETWORK
MODEL TO STUDY GATING

Classical RNN models that are used to model tempo-
ral data or study collective dynamics of neural circuits
typically consist of units linked by additive interactions.
We aim to study an extension of a classical RNN that
has multiplicative gating interactions. This gated RNN
reduces to the classical RNN in certain limits (when the
gates are open) and is closely related to gated RNN mod-
els popular in machine learning. First we describe the
classical RNN, which is defined by a system of N cou-
pled differential equations of the form [16, 26]:

ḣi(t) = −hi(t) +
N

∑
j=1

Jhijφ(hj(t)) (1)

where hi represents the synaptic current of the ith unit
and is an exponentially-averaged (with time constant
of one) version of the input from the rest of the net-
work, Jhij are the coupling strengths between the units,
and φ is a nonlinear activation function such as tanh
with φ(hi(t)) representing the output or activity of the
ith unit. This model has been used to explain the
temporally-irregular rate fluctuations in circuits of corti-
cal neurons [16], and variants of this model are a popular
choice to learn sequence structure in machine learning
applications [7, 10, 11]

We augment the classical RNN model with two gates
that facilitate multiplicative interactions: (i) an update
(or z−) gate which controls the rate of integration, and
(ii) an output (or r−) gate which modulates the strength
of the output. The equations describing the gated RNN
are given by:

ḣi(t) = σz(zi)[ − hi(t) +
N

∑
j=1

Jhijφ(hj(t)) ⋅ σr(rj)] (2)

where φ(x) = tanh(ghx + βh) is the activation function
and σz,r(x) = [1 + exp(−αz,rx + βz,r)]−1 are sigmoidal
gating functions. These functions are parametrized by
gain parameters (gh, αz,r) and biases (βh,z,r), which con-
stitute the parameters of the gated RNN. The input to
the gating functions – zi(t), ri(t) – evolves according to

dynamics driven by the output φ(h(t)) of the network:

τz żi(t) =−zi(t) +
N

∑
j=1

Jzijφ(hj(t)) (3)

τr ṙi(t) =−ri(t) +
N

∑
j=1

Jrijφ(hj(t)) (4)

Note that the coupling matrices Jz,r for z, r are distinct
from Jh.

The value of σz(zi) can be viewed as a dynamical time-
constant for the ith unit, while the output gate controls
σr(ri) and modulates the output strength of unit i, which
in the presence of external input can modulate the rel-
ative strength between internal activity and external in-
put. In the limit σz, σr → 1, we recover the dynamics of
the classical model (eq. 1).

We choose the coupling weights from a Gaussian dis-
tribution with variance scaled such that the input to each
unit will remain O(1). Specifically,

Jh,z,rij ∼ N (0,
1

N
) (5)

This choice of couplings is a popular initialization
scheme for RNNs in machine learning [7, 32], and also in
models of cortical neural circuits [16, 21]. It is possible to
consider another alternative for the coupling matrix for
the gating variables: we can choose (Jz,r) to be a diago-
nal matrix, e.g. Jz,r = 1. In this case, gating is internal –
i.e., zi, ri only depend on hi. In the rest of the paper, we
analyze the various dynamical regimes the gated RNN
exhibits and how the gates shape these dynamics.

III. DYNAMICAL MEAN-FIELD THEORY FOR
GATED MODEL

In this section, we develop a Dynamical Mean-Field
Theory (DMFT) for the gated RNN using the field the-
ory formalism developed in [27, 28, 30, 45] (see [29, 31]
for a recent review). The DMFT is a powerful analytical
framework used to study the dynamics of disordered sys-
tems, and it traces its origins to the study of dynamical
aspects of spin glasses [46, 47] and has been later applied
to the study of random neural networks [9, 16, 22, 48].
We provide a detailed, self-contained derivation of the
DMFT for the gated RNN in Appendix A, and explain
only the key concepts in this section. The starting point
is a generating functional – akin to the generating func-
tion of a random variable – which takes an expectation
over the paths generated by the dynamics. The generat-
ing functional is defined as

ZJ [b̂,b] = E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
i
N

∑
j=1
∫ b̂j(t)Txj(t)dt

⎞
⎠

⎤⎥⎥⎥⎥⎦
(6)

where xj(t) ≡ (hj(t), zj(t), rj(t)) is the trajectory and

b̂j(t) = (b̂hj , b̂zj , b̂rj) is the argument of the generating
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functional. We have also included external fields bj =
(bhj , bzj , brj) which are used to calculate the response func-
tions. The measure in the expectation is a path inte-
gral over the dynamics (c.f. Appendix A). The gener-
ating functional formalism is typically used to describe
stochastic dynamics driven by a noise process, and the
expectation is taken with respect to the measure over
paths induced by the noise. In our case, the dynamics
are deterministic and one can think of the expectation
formally as the limiting measure when the noise variance
goes to zero [49]. The subscript, J in ZJ is meant to
indicate the dependence on the random matrices Jh,z,r,.

The generating functional is used to calculate correla-
tion and response functions using the appropriate (varia-
tional) derivatives. For instance, the two-point function
for the h field is given by:

⟨hi(t)hi (t′)⟩ =
δ2

δb̂hi (t′) δb̂hi (t)
ZJ [b̂,b]

RRRRRRRRRRRb=0

(7)

Up until this point, the formalism is quite general, and
does not rely on the specific form of the dynamics. How-
ever, for large random networks, we expect certain quan-
tities such as the population averaged correlation func-
tion Ch ≡ N−1∑i⟨hi(t)hi(t′)⟩ to be self-averaging, and
thus not vary much across realizations. Indeed, when we
perform a disorder average (over J ), the generating func-
tional Z̄ = ⟨ZJ ⟩J is given by an integral of an exponential
term (the action) which is extensive in N (c.f. Appendix
A), and thus we can approximate Z̄ with it’s value evalu-
ated at the saddle-point of the action. The saddle-point
approximation of Z̄ is a Gaussian path-integral of the
form

Z̄[b̂,b] ≃ e−N ⋅L0[b̂,b] ⋅ ∫ DQ̂DQe−N ⋅L2[Q̂,Q,b̂,b] (8)

where L0 is the saddle-point value of the action and the
integral over L2 account for the Gaussian fluctuations
about the saddle-point. The generating functional for-
malism, in principle, allows studying the scale of fluc-
tuations, which is an interesting direction but beyond
the scope of this work (also c.f. [8]). If we neglect the
fluctuations, then the we see that in the saddle-point ap-
proximation the generating functional is a product of N
identical generating functionals – i.e. the sites get decou-
pled:

Z̄[b̂,b] ≃ e−N ⋅L0[b̂,b] = Z0[b̂,b]N (9)

So the problem reduces to studying a single-site pic-
ture, which corresponds to three coupled scalar variables
(h, z, r) driven by Gaussian noise processes whose corre-
lation functions must be computed self-consistently (Ap-
pendix A). The (stochastic) dynamics of the scalar vari-
ables takes the form

ḣ(t) = −σz(z) ⋅ h(t) + σz(z) ⋅ ηh(t) (10)

τz ż(t) = −z(t) + ηz(t) (11)

τr ṙ(t) = −r(t) + ηr(t) (12)

and the Gaussian processes, ηh, ηz, and ηr have correla-
tion functions given by:

⟨ηh(t) ⋅ ηh (t′)⟩ = ⟨φ(h(t))σr(r(t))⋅
φ (h (t′))σr (r (t′)) ⟩ (13)

⟨ηz(t) ⋅ ηz (t′)⟩ = ⟨φ(h(t)) ⋅ φ (h (t′))⟩ (14)

⟨ηr(t) ⋅ ηr (t′)⟩ = ⟨φ(h(t)) ⋅ φ (h (t′))⟩ (15)

Eqns. 11-10 are the DMFT description of the dynam-
ics, in which the 3N deterministic ODEs have been re-
duced to 3 SDEs. The correlation functions in the single-
site picture such as Ch(t, t′) = ⟨h(t)h(t′)⟩ are the or-
der parameters in the DMFT, and correspond to the
population-averaged correlation functions in the full net-
work. Qualitative changes in the correlation functions
correspond to transitions between dynamical regimes of
the neural network.

The DMFT equations 11-10 can be extended to
get equations of motions for the correlation functions
Ch,Cz,Cr, which will prove useful later on. ‘Squareing’
eqs. 11-10 we get

[−∂2
τ +Cσz(τ)]Ch(τ) =Cσz(τ)Cσr(τ)Cφ(τ) (16)

[−τ2
z ∂

2
τ + 1]Cz(τ) =Cφ(τ) (17)

[−τ2
r ∂

2
τ + 1]Cr(τ) =Cφ(τ) (18)

where we have used the shorthand σz(t) ≡
σz(z(t)); φ(t) ≡ φ(h(t)), and assumed that the
network has reached steady-state, so that the correlation
functions are only a function of the time difference
τ = t − t′. The role of the z−gate as an adaptive time
constant is evident in eq. 16. For time-independent
solutions, i.e. fixed points, eqns. 16 - 18 simplify to read

∆z ≡ ⟨z2⟩ = ∫ Dx φ (
√

∆hx)
2
= ∆r (19)

∆h ≡ ⟨h2⟩ = ∫ DxDy φ (
√

∆hx)
2
σr(

√
∆ry)2 (20)

where have used ∆ instead of C to indicate fixed-point
variances, and Dx is the standard Gaussian measure.

In order to solve the DMFT equations, we use a nu-
merical method described in [50]. Specifically, we gen-
erate noise paths ηh,z,r starting with an initial guess for
the correlation functions, and then iteratively update the
correlation functions using the mean-field equations till
convergence. The classical method of solving the DMFT
by mapping the DMFT equations to a second-order ODE
describing the motion of a particle in a potential cannot
be used in the presence of multiplicative gates. In Fig.
1, we see that the solution to the mean-field equations
agrees well with the true population-averaged correla-
tion function; Fig. 1 also shows the scale of fluctuations
around the mean-field solutions (Fig. 1 thin black lines).
The order parameters from the DMFT (the correlation
functions) provide a description of the macroscopic dy-
namical state of the network in the different parameter
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FIG. 1. Validating the DMFT: panels show the compar-
ison between the population averaged correlation functions
Cφ(τ) ≡ ⟨φ(t)φ(t + τ)⟩ obtained from the full network sim-
ulations in steady-state (purple line) and from solving the
DMFT equations (red line) for three distinct parameter val-
ues. The lag τ is relative to τh (taken to be unity). Thin
black lines show the fluctuations around the average correla-
tion functions. N = 5000 for all the panels.

regimes. We next use the DMFT to uncover phase tran-
sitions and study how the gates affect the local and long-
time dynamics of the network.

IV. HOW THE GATES SHAPE THE LOCAL
DYNAMICS

We first study the local dynamics of the gated RNN
through the lens of the state-to-state Jacobian, and de-
scribe how these dynamics are shaped by the gates. The
instantaneous Jacobian describes the linearized dynam-
ics about an operating point, and the eigenvalues of the
Jacobian inform us about the range of timescales present
and the local stability of the dynamics. As we show be-
low, the spectrum of the Jacobian depends on the corre-
lation functions, which are the order parameters in the
mean-field picture of the dynamics. We study how the

gates shape the support and the local density of eigenval-
ues, through their influence on the correlation functions.

The linearized dynamics in the tangent space at an
operating point x = (h,z, r) are given by

˙δx = D(t)δx (21)

where D is the 3N ×3N dimensional instantaneous Jaco-
bian of the full network equations. Linearization of eq. 2
yields the following expression for D

D =
⎛
⎜
⎝

[σz] (−1 + Jh [φ′σr]) D [σz]Jh [φσ′r]
τ−1
z Jz [φ′] −τ−1

z 1 0
τ−1
r Jr [φ′] 0 −τ−1

r 1

⎞
⎟
⎠

(22)

where [x] denotes a diagonal matrix with the di-
agonal entries given by the vector x. The term
Dij = δijσ′z(zi) (−hi +∑j Jhijφ(hj)σr(rj)) = [−σ′z(z)h] +
[σ′z ⊙ Jh(φ⊙ σr)] arises when we linearize about a time-
varying state and will be zero for fixed-points. We in-
troduce the additional shorthand φ′(t) = φ′(h(t)) and
σ′r/z = σ

′
r/z(r/z(t)). We will need additional tools from

random matrix theory, along with the mean-field theory
developed above, to analyse the spectrum of the Jaco-
bian D. We develop the random matrix formalism for
the gated RNN below.

A. Spectral support of the Jacobian

The Jacobian D is a block-structured matrix con-
structed from the random coupling matrices Jh,z,r and
diagonal matrices of the state variables. In the limit of
large N , we expect the spectrum to be self-averaging –
i.e. the distribution of eigenvalues for a random instance
of the network will approach the ensemble-averaged dis-
tribution. We can thus gain insight about typical dy-
namical behavior by studying the ensemble (or disorder)
averaged spectrum of the Jacobian. Our starting point
is the disorder-averaged spectral density µ(λ) defined as

µ(λ) = 1

3N
E [

3N

∑
i=1

δ(λ − λi)] (23)

where the λi are the eigenvalues of D for a given re-
alization of Jh,z,r and the expectation is taken over
the distribution of real Ginibre random matrices from
which Jh,z,r are drawn. Using an alternate represen-
tation for the Dirac delta function in the complex plane
(δ(λ) = π−1∂λ̄λ

−1), we can write the average spectral den-
sity as

µ(λ) = 1

π

∂

∂λ̄
E [ 1

3N
Tr [(λ13N −D)−1]] (24)

where 13N is the 3N -dimensional identity matrix. D is
in general non-Hermitian, so the support of the spec-
trum is not limited to the real line, and the standard
procedure of studying the Green’s function G(λ, λ̄) =
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FIG. 2. How gates shape the Jacobian spectrum: (a-d) Jacobian eigenvalues (red dots) of the gated RNN in (time-varying)
steady-state. The dark outline is the spectral support curve predicted by eq. 29. Bottom row corresponds to larger αz and
right column corresponds to large αr. (e) Density of Jacobian eigenvalues in a disk of radius r = 0.05 centered at the origin
plotted against αz. Circles are numerical density calculated from the true network Jacobian (averaged over 10 instances), and
the dashed line is a fit from eq. 33. (f) Intercept of the spectral curve on the imaginary axis, plotted against αz for three
different values of gh (αr = 0). For network simulations N = 2000, gh = 3, τr = τz = 1 unless otherwise stated, and all biases are
zero.

(3N)−1 TrE [(λ13N −D)−1] by analytic continuation is

not applicable since it is non-holomorphic on the support.
Instead, we use the method of Hermitization [51, 52] to
analyse the resolvent for an expanded 6N×6N Hermitian
matrix H

G(η, λ, λ̄) =E [(η16N −H)−1] (25)

H = ( 0 λ −D
λ̄ −DT 0

) (26)

and the Green’s function for the original problem is ob-
tained by considering the lower-left block of G

G(λ, λ̄) = lim
η→i0+

1

3N
TrG21(η, λ, λ̄) (27)

In order to proceed further, we invoke an ansatz called
the local chaos hypothesis [53, 54], which posits that for
large random networks in steady-state, the state variables
are statistically independent of the random coupling ma-
trices Jz,h,r (also see [55]). The local chaos hypothesis
combined with the assumption of self-averaging for large
networks implies that the Jacobian (eq. 22) only has
an explicit linear dependence on Jh,z,r, and the state
variables are governed by their steady-state distribution
from the disorder-averaged DMFT. These assumptions
make the random matrix problem tractable, and we can
evaluate the Green’s function by using the self-consistent
Born approximation, which is exact as N → ∞ (details

are given in Appendix B; also see [56] for a similar ap-
proach in discrete-time RNNs). The result of this calcu-
lation is the spectral curve which is the boundary of the
eigenvalue support in the complex plane. We note that
the most general expression for the spectral curve (Ap-
pendix B), eq. B40) involves empirical averages (traces)
over the 3N dimensional state variables. For large N , we
can appeal to a concentration of measure argument to re-
place these discrete sums with averages over the steady-
state distribution from the DMFT – i.e. we can re-
place 1

N ∑i F (hi, zi, ri) with ⟨F (h(t), z(t), r(t))⟩, where
the brackets indicate average over the steady-state dis-
tribution.

Thus, by combining the RMT with DMFT, we ar-
rive at the following expression for the spectral boundary
curve:

(⟨σ2
r⟩ +

⟨φ2σ′2r ⟩
∣1 + τrλ∣2

)⟨ φ′2σ2
z

∣λ + σz ∣2
⟩ + 1

∣1 + τzλ∣2
⟨ D2φ′2

∣λ + σz ∣2
⟩ = 1.

(28)

Two major simplifications occur at fixed-points: first,
D = 0 and the entire second term is dropped, and second
the random variables h and z become independent and
Gaussian distributed (otherwise, the distribution of h will
depend on the z-gate through σz(z). As a result, the
equation for the spectral curve at fixed-points is given by
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⟨φ′2⟩ (⟨σ2
r⟩ +

⟨φ2⟩⟨σ′2r ⟩
∣1 + τrλ∣2

)⟨ σ2
z

∣λ + σz ∣2
⟩ = 1, (29)

As alluded to above, the averages in eq. 29 are taken
with respect to the steady-state distribution given by the
DMFT. For fixed-points, we can thus express eq. 29
in terms of Gaussian averages involving the variances
∆h,∆z,∆r given in eq. 19 as

⟨φ(
√

∆hx)2⟩
x
⟨σ′r(

√
∆rx)2⟩

x

∣1 + τrλ∣2
+ ⟨σr(

√
∆rx)2⟩

x

= 1

⟨φ′(
√

∆hx)2⟩
x

⟨
(σz(

√
∆zx))

2

∣σz(
√

∆zx) + λ∣
2
⟩
−1

x

(30)

The notation ⟨⋅⟩x in eq. 30 denotes an average w.r.t
the standard Gaussian measure on x. Fig. 2 [a-d] show
that the RMT prediction of the spectral support (dark
outline) agrees well with the numerically calculated spec-
trum (red dots) in different dynamical regimes. As a con-
sequence of eq. 30, we get a condition for the stability of
zero fixed-point. The leading edge of the spectral curve
for the zero fixed-point will cross zero when

zero-FP stability condition: gh < 1 + e−βr (31)

So, in the absence of biases, gh > 2 will make the zero
FP unstable. More generally, a FP will become unstable
when the leading edge of the spectrum crosses zero, and
the condition for this is given by

condition for FP to become unstable:

⟨φ(
√

∆hx)2⟩
x
⟨σ′r(

√
∆rx)2⟩

x
+ ⟨σr(

√
∆rx)2⟩

x

> 1

⟨φ′(
√

∆hx)2⟩
x

(32)

We will see later on that the time-varying state corre-
sponding to this regime is chaotic. We now proceed to
analyze how the two gates shape the Jacobian spectrum.

B. Update gate facilitates slow modes and Output
gate causes instability

To understand how each gate shapes the local dynam-
ics, we study their effect on the density of Jacobian eigen-
values near zero and the shape of the spectral support
curve – the former tells us about timescales present in
the dynamics, and the latter about stability. For ease
of exposition, we first consider how these quantities are
shaped by the gates in the absence of biases (βr,z,h = 0);
we will consider the role of biases later on.

Fig. 2 shows how the gain parameters of the update
and output gates – αz and αr respectively – shape the
Jacobian spectrum. In Fig. 2 [a-d], we see that αz has
two salient effects on the spectrum: increasing αz leads

to i) an accumulation of eigenvalues near zero; and ii)
a pinching of the spectral curve for certain values of gh
wherein the intercept on the imaginary axis gets smaller
(Fig. 2b; also see Sec. V ). In Fig. 2 [a-d], we also see
that increasing the value of αr leads to an increase in the
spectral radius, thus pushing the leading edge (max Reλi)
to the right and thereby facilitating instability.

The accumulation of eigenvalues near zero with in-
creasing αz implies a wide spectrum of timescales in the
local dynamics since timescales are given by the inverse
of the (real part of) the eigenvalues. To understand this
accumulation quantitatively, it is helpful to consider the
scenario where αz is large and we replace the tanh acti-
vation functions with a piece-wise linear approximation.
In this limit, the density of eigenvalues within a radius δ
of the origin is well approximated by the following func-
tional form (details in Appendix C):

P (∣λ(Dx)∣ < δ) ∼ c0erf( c1
αz

) (33)

where c0, c1 are constants that, in general, depend on
ar, δ, and gh. Fig. 2e, shows this scaling for a specific
value of δ: the dashed line shows the predicted curve
and the circles indicate the actual eigenvalue density cal-
culated using the full Jacobian. In the limit of αz → ∞
we get an extensive number of eigenvalues at zero, and
the eigenvalue density converges to (see Appendix C):

µ(λ) = (1 − fz)δ(λ) + fz(1 − fh)δ(λ + 1) + 4

πg2
h

I{∣λ∣≤g2
h
/4}

(34)

where fz is the fraction of update gates which are non-
zero, and fh is the fraction of unsaturated activation
functions φ(h). For other choices of saturating non-
linearities, the extensive number of eigenvalues at zero
remains; however, the expressions are more complicated.

A second interesting aspect of increasing αz is the
pinching of the spectral curve for certain values of gh. As
is evident from Fig. 2f, increasing the value of αz point
of intersection of the spectral curve with the imaginary
axis. This pinching further accentuates the accumula-
tion of eigenvalues near zero, and in the limit αz → ∞
the leading edge of the spectrum can become pinched ex-
actly at zero thus making an unstable system marginally
stable. However, as shown in 2f (black line), pinching
does not occur for all gh; when gh is large enough, in-
creasing αz does not lead to pinching. We analyse the
phenomenon of pinching and marginal stability below.

V. MARGINAL STABILITY AND LINE
ATTRACTORS

We see an accumulation of Jacobian eigenvalues near
zero and a pinching of the spectral curve near zero as the
update becomes more switch-like (i.e. for larger values
of αz). In the limit αz →∞, this can convert previously
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unstable points marginally stable by resting the leading
edge of the spectral curve exactly at zero. In the limit
αz →∞, the Jacobian spectrum undergoes a topological
transition from a single simply connected domain to two
domains, both containing an extensive number of eigen-
values. A finite fraction of eigenvalues will end up sitting
exactly at zero, while the rest occupy a finite circular re-
gion: if the leading edge of the latter crosses zero, then
the FP remains unstable. The separation of these do-
mains is accomplished by a gradual pinching of the spec-
trum near zero. However, as seen in Fig. 2f, the pinching
doesn’t happen if gh is sufficiently large. Here, we pro-
vide the conditions when pinching can occur and thus
marginal stability can emerge. We then show how this
phenomenon can provide a mechanism for computations
using line attractors.

A. Conditions for marginal stability

Let us again start with the case where αr = 0 and
there are no biases. To show the emergence of marginal
stability, we can focus on the FP spectrum and show how
it evolves with increasing αz. In the limit of large αz, it
can be shown that the leading edge of the spectrum scales
as (see Appendix C)

λe ∼e−cαz
√

∆h where c satisfies

erfc( c√
2
) = 8

⟨φ′2⟩
, (35)

where ⟨φ′2⟩ ≡ ∫ Dxφ′(
√

∆hx)2, i.e. the average is taken
over the Gaussian fixed point distribution. As long as
eq. 35 has a positive solution for c, we expect pinching
of the spectral edge with increasing αz, and in the limit
αz →∞, the spectral edge will be poised at zero making
the unstable points marginally stable. Thus, marginal
stability is possible for all parameters for which

⟨φ′ 2⟩ < 8 (36)

It’s easy to see from eq. 29 that unstable points satisfy
⟨φ′ 2⟩ > 4, so we see that not all unstable points can be
made marginally stable; we require eq. 36 as well. More
generally, for finite αr, in the limit αz → ∞, σz will be-
come binary and the condition for marginal stability is:

⟨φ′2⟩ ( ⟨φ2⟩ ⟨σ′2r ⟩ + ⟨σ2
r⟩ ) <

1

⟨σz⟩
(37)

We will return to this when we describe the phase di-
agram for the gated RNN (Sec. IX). There we will see
that the marginally stable region occupies a volume in the
parameter space adjoining the critical lines on one side.
Next, we turn to implications of pinching and clumping
for implementing computations with the dynamics.
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FIG. 3. Gating produces line attractors Top row: sample
traces from a network with switch-like update gates (αz = 30)
show slow evolution (time on x−axis is relative to τh). Bottom
row: An input is applied from t = 0 till t = 10, either aligned
with a slow eigenvector uλ (red traces) or unaligned with slow
modes (black dashed trace). Plot shows the excess projection
of the network state on the left eigenvector uλ. Different
shades of red correspond to different input strengths. (N =

2000, gh = 3.0, αr = 0.0)

B. Line attractors

Spectral pinching and clumping of eigenvalues near
zero lead to a significant reduction in the number of
unstable directions, and a manifold of slow directions
emerges. In particular, for large αz, any perturbation in
the span of the eigenvectors corresponding to the eigen-
values with magnitude close to zero will be integrated by
the network, and once the input perturbation ceases the
memory trace of the input will be retained for a duration
much longer than the intrinsic time-constant of the neu-
rons; perturbations along other eigenvectors, however,
will relax with a timescale dictated by the inverse of (the
real part of) their eigenvalues. Thus the manifold of slow
directions will form an approximate continuous attrac-
tor on which input can effortlessly move the state vector
around. These approximate continuous attractor dynam-
ics are illustrated in Fig. 3. At time t = 0, an input is
applied for 10 seconds along an eigenvector of the Jaco-
bian with an eigenvalue close to zero. Inputs along the
slow manifold with varying strengths (different shades
of red) are integrated by the network as evidenced by
the excess projection of the network activity on the left-
eigenvector (uλ) corresponding to the slow mode; on the



9

other hand, inputs not aligned with the slow modes decay
away quickly (dashed black line). Recall that the intrin-
sic time-constant of the neurons here is set to 1 second.
The picture that emerges is the following: there is a man-
ifold spanned by the slowest eigenvectors of the Jacobian
where the flow is almost stationary, and any input ly-
ing within the span of these eigenvectors will effortlessly
move the activity along the direction of the input. Once
the input ceases, the memory will be retained for a long
time; on the other hand, components of the input that
are not in the span of the slowest modes will be inte-
grated in a leaky fashion, decaying with a spectrum of
timescales, and the perturbed activity will flow back to
the slow manifold spanned by the slow modes. Of course,
this is a local picture and network dynamics will slowly
drift, so the slow manifold will evolve; however, as we can
see from Fig. 3, this picture is accurate over a reasonably
long time.

VI. LONG-TIME DYNAMICS AND
TRANSITION TO CHAOS

We have thus far studied how the gates shape the lo-
cal dynamics by looking at their effect on the Jacobian.
The nature of these effects could change when we con-
sider longer timescales. Moreover, we would like to know
what is the nature of the time-varying state when the dy-
namics are locally unstable – in particular, is it chaotic?
If so, are there many unstable directions? To address
these questions, we characterize the asymptotic dynam-
ics of the network using Lyapunov exponents. We study
how the gates shape the numerically calculated Lyapunov
spectrum of the network, and derive an analytical pre-
diction for the maximum Lyapunov exponent using two
different approaches: one based on the DMFT and the
other using RMT. The RMT based approach is novel and
gives a relation between the Lyapunov exponent and the
relaxation time.

A. How gates shape the Lyapunov spectrum

To characterize the asymptotic behavior of the net-
work, we study how infinitesimal perturbations grow or
shrink along the trajectories of the dynamics. The evolu-
tion of perturbations δx(t) along a trajectory follow the
tangent-space dynamics governed by the Jacobian

∂tδx(t) =D(t)δx(t) (38)

So after a time T , the initial perturbation δx(0) will be
given by

δx(T ) = [e∫
T
0 dtD(t)] δx(0) (39)

When the infinitesimal perturbations grow/shrink expo-
nentially, the rate of this exponential growth/decay will

be dictated by the maximal Lyapunov exponent defined
as [57]:

λmax ∶= lim
T→∞

1

T
lim

∥δx(0)∥→0
ln

∥δx(T )∥
∥δx(0)∥

(40)

For ergodic systems, this limit is independent of almost
all initial conditions, as guaranteed by Oseledet’s multi-
plicative ergodic theorem [57]. Positive values of λmax
imply that the nearby trajectories diverge exponentially
fast, and the system is chaotic. More generally, the set
of all Lyapunov exponents – the Lyapunov spectrum –
yields the rates at which perturbations along different
directions shrink or diverge, and thus provide a fuller
characterization of asymptotic behaviour. The first k or-
dered Lyapunov exponents are given by the growth rates
of k linearly independent perturbations. These can be
obtained as the logarithms of the eigenvalues of the Os-
eledet’s matrix, defined as [57]

M(t) = lim
t→∞

([e∫
t
0 dt

′D(t′)]
T
[e∫

t
0 dt

′D(t′)])
1
2t

(41)

However, this expression cannot be directly used to
calculate the Lyapunov spectra in practice since M(t)
rapidly becomes ill-conditioned. We instead employ a
method suggested by [58] (also c.f. [59] for Lyapunov
spectra of RNNs). We start with k orthogonal vectors
Q0 = [q1, . . . , qk] and evolve them using the tangent-space
dynamics, eq. 38, for a short time interval t0. Therefore,
the new set of vectors are given by

Q̂ = [e∫
t0
0 dt′D(t′)]Q0 (42)

We now decompose Q̂ = Q1R1 using a
QR−decomposition, into an orthonormal matrix Q1

and a upper-diagonal matrix R1 with positive diagonal
elements, which give the rate of shrinkage/expansion of
the volume element along the different directions. We
iterate this procedure for a long time, t0 × Nl, and the
first k ordered Lyapunov exponents are given by

λi = lim
Nl→∞

1

Nlt0

Nl

∑
j=1

lnRjii i ∈ {1, . . . , k} (43)

Fig. 4a,b shows how the update (z−) and output (r−)
gates shape the Lyapunov spectrum. We see that as
the update gets more sensitive (larger αz), the Lyapunov
spectrum flattens pushing more exponents closer to zero.
Moreover, a more sensitive output gate (larger αr) makes
the Lypunov exponents larger thus increasing the rate of
growth in unstable directions. We note that these effects
are largely consistent with the results on how the gates
shape the local dynamics. However, a prediction of the
Lyapunov exponents based purely on the local estimates
of the Jacobian eigenvalues will be incorrect due to po-
tentially large correlations between the Jacobian matrices
across time.
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FIG. 4. Asymptotic behavior of the gated network (a,b):
The first 50 ordered Lyapunov exponents for a gated RNN
(N = 2000) as a function of varying (a) αz and (b) αr. The
Lyapunov spectrum was calculated using the QR−method de-
scribed in the main text with total simulation time T = 1000s.
(c) The maximal Lyapunov exponent λmax predicted by the
DMFT (solving eqns. 49-51; solid line) and obtained numer-
ically using the QR−method (circles; N = 2000, αz = 0). Note
that the transition for αr = 20 is sharp, and the sloped line is a
result of discrete sampling of gh; also c.f. Fig. 6c. τz = τr = 2.0
here.

B. DMFT prediction for the maximal Lyapunov
exponent

In addition to shaping of the Lyapunov spectrum, we
would like to study the chaotic nature of the time-varying
phase by means of the maximal Lyapunov exponent, and
characterize when the transition to chaos occurs. We ex-
tend the DMFT for the gated RNN to calculate the max-

imum Lyapunov exponent, and to do this, we make use of
a technique suggested by [53, 60] and clearly elucidated
in [22]. The starting point of the method is two replicas
of the system x1(t) and x2(t) with the same coupling ma-
trices Jh,z,r and the same parameters. If the two systems
are started with initial conditions which are close, then
the rate of convergence/divergence of the trajectories re-
veals the maximal Lyapunov exponent. To this end, let’s
define d(t, s) ∶= N−1∑(x1

i (t) − x2
i (s))2, and study the

growth rate of d(t, t). In the large N limit, we expect
population averages like C12(t, s) ∶= N−1∑x1

i (t)x2
i (s) to

be self-averaging (like in the DMFT for a single system)
[61], and thus we can write

d(t, s) = C11(t, t) +C22(s, s) −C12(t, s) −C21(t, s) (44)

For trajectories that start nearby, the asymptotic
growth rate of d(t) is the maximal Lyapunov exponent.
In order to calculate this using the DMFT, we need a
way to calculate C12 – the correlation between replicas –
for a typical instantiation of systems in the large N limit.
As suggested by [22], this can be achieved by considering
a joint generating functional for the replicated system:

Z̃J [b̂1, b̂2,b1,b2] = E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
i

2

∑
µ=1

N

∑
j=1
∫ b̂µj (t)

Txµj (t)dt
⎞
⎠

⎤⎥⎥⎥⎥⎦
(45)

We then proceed to take the disorder average of this
generating functional – in much the same way as a sin-
gle system – and this introduces correlations between the
state vectors of the two replicas. A saddle-point approx-
imation as in the single system case (c.f. Appendix A),
yields a system of coupled SDEs (one for each replica),
similar to eq. 11, but now the noise processes in the
two replicas are coupled, so that terms like ⟨η1

h(t)η2
h(t′)⟩

need to be considered. As before, the SDEs imply the
equations of motion for the correlation functions

[−∂2
τ +Cµνσz (τ)]C

µν
h (τ) =Cµνσz (τ)C

µν
φ (τ)Cµνσr (τ) (46)

[−τ2
z ∂

2
τ + 1]Cµνz (τ) =Cµνφ (τ) (47)

[−τ2
r ∂

2
τ + 1]Cr(τ) =Cµνφ (τ) (48)

where µ, ν ∈ {1,2} are the replica indices. Note that
the single-replica solution will clearly be a solution to
this system, reflecting the fact that marginal statistics of
each replica is the same as before. When the replicas are
started with initial conditions that are ε-close, we expect
the inter-replica correlation function to diverge from the
single replica steady-state solution, so we expand C12 to
linear order as C12

h,z,r(t, s) ≈ Ch,z,r(t − s) + εχ̃h,z,r(t, s).
From eq. 44 we see that d(t, t) ∼ εχ̃(t, t), and thus the
growth rate of χ̃ will yield the required Lyapunov expo-
nent. To this end we make an ansatz χ̃h,z,r = eκTχ(τ)
where 2T = t + s and 2τ = t − s, and κ is the DMFT pre-
diction of the maximum Lyapunov exponent that needs
to be solved for. Substituting this back in eq. 46, we get
a generalized eigenvalue problem for κ:
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[ (⟨σz⟩ + κ)2 − ∂2
τ +Cσz(τ) − ⟨σz⟩2 ]χh (τ) =

Cσ′z(τ)[Cφ⋅σr(τ) −Ch(τ)]χz (τ)

+ Cσz (τ)
∂Cφ⋅σr (τ)

∂Ch
χh (τ) , (49)

[ (1 + τzκ)2 − τ2
z ∂

2
τ ]χz (τ) =

∂Cφ (τ)
∂Ch

)χh (τ) , (50)

[ (1 + τrκ)2 − τ2
r ∂

2
τ ]χr (τ) =

∂Cφ (τ)
∂Ch

)χh (τ) . (51)

The largest eigenvalue solution to this problem is the
required maximal Lyapunov exponent. Note, this is the
analogue of the Schrödinger equation for the maximal
Lyapunov exponent in the vanilla RNN. In this case,
when αz = 0 (or small), the h field is Gaussian and we
can use Price’s theorem for Gaussian integrals to replace
the variational derivatives on the r.h.s of eq. 49-51 by
simple correlation functions. For instance:

∂Cφ (τ)
∂Ch(τ)

= Cφ′ (τ) (52)

In this limit, we see good agreement between the numer-
ically calculated maximal Lyapunov exponent (Fig. 4c
dots) compared to the DMFT prediction (Fig. 4c solid
line) obtained by solving the eigenvalue problem (eq. 49-
51). For large values of αz we see quantitative deviations
between the DMFT prediction and the true λmax.

C. RMT prediction for λmax and its relation to
relaxation time

We now provide an alternate expression for the max-
imal Lyapunov exponent, λmax, which relates it to the
relaxation time of the dynamics. We first derive the re-
sult for the classical RNN, and simply state the result
for the gated RNN while leaving the details to Appendix
G. Oseledet’s multiplicative ergodic theorem guarantees
that

λmax = lim
t→∞

1

2t
log

∥χ(t)∥2

N
, (53)

= lim
t→∞

1

2t
log

1

N
Tr [χ(t)χ(t)T ] , (54)

where χ(t) = e∫
t
0 dt

′D(t′) and D is the Jacobian. For the
vanilla RNN, the Jacobian is given by

D = −1 + J [φ′(t)] . (55)

We expect the maximal Lyapunov exponent to be in-
dependent fo the random network realization, and thus
equal to its value after disorder-averaging. Defining the

diagonal matrix R(t) = ∫
t [φ′(t′)]dt′, this assumption

gives

1

N
Tr [χ(t)χ(t)T ] ≈ e−2t ⟨ 1

N
Tr eJR(t)eR(t)JT ⟩ , (56)

= e−2t
∞
∑
n=0

1

(n!)2
( 1

N
TrR(t)2)

n

, (57)

where the second line in eq. 56 follows after disorder
averaging over J and keeping only terms to leading order
in N . Next, we may apply the DMFT to write

1

N
TrR(t)2 =∫

t

dt′dt′′
1

N

N

∑
i=1

φ′i(t′′)φ′i(t′), (58)

≈ ∫ dt′dt′′Cφ′(t′, t′′). (59)

In steady-state, the correlation function depends only on
the difference of the two times, and thus we can write

∫ dt′dt′′Cφ′(t′, t′′) ≈ ∫
2t

0

du

2
∫

t

0
dτCφ′(τ) ≡ t2τR, (60)

where we have defined the relaxation time for the Cφ′
correlation function

τR ≡ 1

t
∫

t

0
dτ Cφ′(τ). (61)

Substituting eq. 60 in eq. 56 we get

1

N
Tr [χ(t)χ(t)T ] = e−2tI0(2t

√
τR), (62)

which for long times behaves like exp (2(√τR − 1)t). In-
serting this into eq. 53 gives us the RMT prediction for
the maximal Lyapunov exponent for the vanilla RNN

λmax =
√
τR − 1. (63)

This formula relates the asymptotic Lyapunov exponent
to relaxation time of a local correlation function in steady
state.

Now, we state the analogous result for the gated RNN
with only the r−gate and relegate details to Appendix G.
The maximal Lyapunov exponent for the gated RNN is
given by

λmax =
⎛
⎝
τR +

√
τ2
R + 4τAτQ

2

⎞
⎠

1/2

− 1, (64)

where the relaxation times τA, τR, τQ are defined as

τR = lim
t→∞

1

t
∫

t

0
dτCφ′(τ)Cσr(τ), (65)

τA = lim
t→∞

1

t
∫

t

0
dτCφ′(τ), (66)

τQ = lim
t→∞

1

t
∫

t

0
dτCφ(τ)Cσ′r(τ). (67)
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D. Condition for continuous transition to chaos

The value of αz affects the precise value of the max-
imal Lyapunov exponent λmax; however, numerics sug-
gest that the transition to chaos – the point at which
λmax becomes positive – is not dependent on αz (data
not shown). This makes intuitive sense since the update
gate acts as a dynamical time-constant, and this should
not make a stable system chaotic. We can see this more
clearly by calculating the transition to chaos when the
leading edge of the spectral curve (for a FP) crosses zero.
This condition is given by eq. 32, and we see that it has
no dependence on αz or the update gate.

We note that this condition, eq. 32, for the transition
to chaos – when the stable fixed-point becomes unstable
– is valid when the chaotic attractor emerges continu-
ously from the fixed-point (Fig. 4c, αr = 0,2). However,
in the gated RNN, there is another another interesting –
and discontinuous – transition to chaos (Fig.4c, αr = 20):
for sufficiently large αr, the transition to chaos is discon-
tinuous and occurs at a value of gh where the zero FP is
still stable (gh < 2 with no biases). This is a novel type of
transition which is not present in the vanilla RNN, and
we characterize this phenomenon in detail below.

VII. A NOVEL, DISCONTINUOUS
TRANSITION TO CHAOS

In this section, we describe in detail a novel state,
characterized by a proliferation of unstable fixed-points,
and the coexistence of a stable fixed-point with a chaotic
pseudo-attractor. It is the appearance of this state that
gives rise to the discontinuous transition observed in Fig.
4c. The appearance of this state is mediated by the out-
put gate becoming more switch-like (i.e. increasing αr)
in the quiescent region for gh, and to our knowledge no
such comparable phenomenon exists in RNNs with ad-
ditive interactions. This phenomenon has a few salient
aspects: i) we see the spontaneous appearance of unsta-
ble fixed-points with increasing αr, for certain values of
gh in the quiescent region; this transition has no obvious
dynamical signatures; ii) if we further increase αr be-
yond a second threshold, we observe a dynamical transi-
tion characterized by a state where the stable fixed-point
coexists with a chaotic dynamics; this state is charac-
terized by long, chaotic transients whose lifetimes scale
with system size. This gap between the appearance of
fixed-points and the chaotic attractor differs from the re-
sult of Wainrib & Touboul [38] for purely additive RNNs,
where the proliferation of unstable fixed-points (topolog-
ical complexity) is tightly linked to the chaotic dynamics
(dynamical complexity); and iii) finally, on increasing gh
for large but fixed αr, the stable fixed-point disappears
and the state smoothly transitions into a full chaotic at-
tractor that was characterized above (for gh > 2.0 with
no biases). We elaborate on these points below. For ease
of presentation, the rest of the section will assume that

all biases are zero.

A. Spontaneous emergence of fixed-points

For gh < 2.0 and small αr, the zero fixed-point is the
globally stable state for the dynamics and the only solu-
tion to the fixed-point equations, eq. 19, for ∆h. How-
ever, as we increase αr for a fixed gh, two additional
non-zero solutions to ∆h spontaneously appear at a crit-
ical value α∗FP (gh) as shown in Fig. 5a. The appearance
of these solutions corresponds to a proliferation of unsta-
ble fixed-points in the phase space. However, the zero
fixed-point continues to be the globally stable state for
the dynamics for αr near α∗FP (gh).

Numerical solutions to the fixed-point equations reveal
the form of the bifurcation curve α∗r,FP (gh) and the asso-

ciated value of ∆∗
h(gh). We see that α∗r,FP (gh) increases

rapidly with decreasing gh, dividing the parameter space
into regions with either 1 or 3 solutions for ∆h. The cor-
responding ∆∗

h(gh) vanishes at two boundary values of gh
– one at 2.0 and another, gc, below 1.5 where α∗r → ∞.
This naturally leads to the question of whether the fixed-
point bifurcation exists for all values of gh below 2.0.

To answer this, we perturbatively solve the fixed-point
equations in two asymptotic regimes: i) gh → 2− and ii)
gh → g+c . Details of the perturbative treatment are in
Appendix D 2. For gh = 2 − ε, we see that the perturba-
tive problem undergoes a bifurcation from one solution
(∆h = 0) to three when αr crosses the bifurcation thresh-

old α∗r(2.0) =
√

8, and this is the left limit of the bifur-
cation curve in Fig. 5b. The larger non-zero solution for
the variance at the bifurcation point scales as

∆∗
h ≈ (α2

r − 8) ⋅ ξ0 + ξ1ε for αr → α∗r,FP (2) =
√

8, (68)

where ξ0 and ξ0 are positive constants (see Appendix
D 2).

At the other extreme, to determine the smallest value
of gh for which a bifurcation is possible, we note from
Fig. 5b that in this limit αr →∞, and thus we can look
for solutions to ∆h in the limit: ∆h ≪ 1 and αr → ∞
and αr

√
∆h ≫ 1. In this limit, there is a bifurcation in

the perturbative solution when gh > g∗h =
√

2, and close
to the critical point, the fixed-point solution is given by
(see Appendix D 2):

∆∗
h(

√
2
+
) ∼

g2
h − 2

2g4
h

for gh →
√

2
+
. (69)

Thus in the region gh ∈ (
√

2,2) there exist non-zero
solutions to the fixed-point equations once αr is above a
critical value α∗r(gh). These solutions correspond to un-
stable fixed-points appearing in the phase space. Inter-
estingly, as discussed in detail below, there are no obvious
dynamical signatures of this transition in the transients
of the network, and it is only when αr crosses another
critical value do we see a change in dynamics. The zero
fixed-point is still the global attractor of the dynamics.
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FIG. 5. Bifurcation transition for fixed-point solutions (a)
spontaneous appearance of non-zero solutions (dashed red
lines) to the FP equations with increasing αr at fixed gh.
Both the FP solutions are unstable with respect to the dy-
namics. For a given gh, there is a critical α∗r,FP (gh) at which
the non-zero solution first appears. (b) The critical α∗r,FP (gh)
as a function of gh dividing the parameter space into regions
with just one FP solution (the zero FP) or 3 FP solutions.

The dashed line represents left critical value gc =
√

2 below
which a bifurcation is not possible. (c) The corresponding
solution to the FP equations, ∆∗h(gh), for αr = α

∗

r,FP (gh).

B. Delayed dynamical transition shows a
decoupling between topological and dynamical

complexity

The picture from the fixed-point transition above is
that when gh is in the interval (

√
2,2), there is a prolifer-

ation of unstable fixed-points in the phase space provided
αr > α∗r,FP (gh). However, it turns out that the sponta-
neous appearance of these unstable fixed-points is not ac-
companied by any dynamical signatures – as measured by
the Lyapunov exponents (see Fig. 6) or by the transient

times (see Fig. 7). It is only when αr is increased further
beyond a second critical value α∗r,DMFT (gh), that we see
the appearance of chaotic and long-lived transients. This
is significant in regard to a result by Wainrib & Touboul
[38], where they showed that the transition to chaotic
dynamics (dynamical complexity) in random RNNs is
tightly linked to the proliferation of critical points (topo-
logical complexity), and in their case, the exponential
rate of growth of critical points (a topological property)
was the same as the maximal Lyapunov exponent (a dy-
namical property). Here, we see that the topological and
dynamical complexity are decoupled with an intermedi-
ate regime where critical points proliferate without affect-
ing global dynamics significantly. Thus, for gated RNNs,
there appears to be another distinct mechanism for the
transition to chaos, and the accompanying transition is
a discontinuous one.

Before we elaborate on the nature of the time-varying
activity across the dynamical transition, let us charac-
terize the second dynamical transition curve given by
α∗r,DMFT (gh) (Fig. 6a, red curve). For ease of discus-

sion, we turn off the update gate (αz = 0) and introduce
a functional Fψ for a 2-D Gaussian average of a given
function ψ(x)”

Fψ (Ch(0),Ch(τ)) = E [ψ(z1)ψ(z2)] , (70)

where (z1

z2
) ∼ N (0,C) C = (Ch(0) Ch(τ)

Ch(τ) Ch(0)
) . (71)

The DMFT equations for the correlation functions then
become

Ch(τ) − 4∂2
τCh(τ) = Fφ(Ch(0),Ch(τ))Fσr(Cr(0),Cr(τ)),

Cr(τ) − τ2
r ∂

2
τCr(τ) = Fφ(Cφ(0),Cφ(τ)). (72)

We further make an approximation that τr ≪ 1, which in
turn implies Cr(τ) ≈ Cφ(τ). This approximation turns
out to hold even for moderately large τr as will be seen
from the numerics in Fig. 6c. With these approxima-
tions, we can integrate the equations for Ch(τ) to arrive
at an equation for the variance C0

h ≡ Ch(0) by solving
the following equation for C0

h (details in Appendix E):

Ch(0)2 + 2∫
C0
h

0
dChFφ (Ch,C0

h)Fσr (Cφ,C0
φ) = 0. (73)

Solving this equation will give the DMFT prediction for
the variance for any gh and αr. Beyond the critical
value of αr, two non-zero solutions for C0

h spontaneously
emerge. In order to use eq. 73 to find a prediction for
the DMFT bifurcation curve α∗r,DMFT (gh), we need to
use the additional fact that at the bifurcation point the
two solutions coincide, and there is only one non-zero so-
lution. To proceed, we can view the L.H.S of eq. 73, as
a function of αr, gh and C0

h: F(gh, αr,C0
h). Then the

equation for the bifurcation curve is obtained by solving
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FIG. 6. The discontinuous dynamical transition (a) The critical DMFT transition curve α∗r,DMFT (gh) (red curve) calculated

using eqns. 74, 75. The FP transition curve is shown in black. Green dashed line corresponds to gc =
√

8/3 below which the
dynamical transition is not possible. (b) The corresponding DMFT solution to the variance (eq. 73) for αr = α

∗

r,DMFT (gh).
(c) Numerically calculated maximum Lypunov exponent λmax as a function of αr for two different values of gh. The dashed
lines correspond to the DMFT prediction for the discontinuous transition from (a). (d) The upper bound on the dimension
of the chaotic attractor DA according to the Kaplan-Yorke conjecture (eq. 78) as a function of αr for gh = 1.85. (Inset) The
first 450 ordered Lyapunov exponents for αr > α

∗

r,DMFT (gh) (green) and αr < α
∗

r,DMFT (gh) (red). N = 2000;αz = 0 for the
numerical simulations. (e) Schematic of the bifurcation transition: for gh < 2 and αr < α

∗

r,FP the zero FP is stable and is the

only solution to the FP equations (bottom left box); for
√

2 < gh < 2 and α∗r,FP < αr < α
∗

r,DMFT the zero FP is still stable, but

there is a proliferation of unstable FPs without any clear dynamical signature (top left); for
√

8/3 < gh < 2 and αr > α
∗

r,DMFT

chaotic dynamics coexist with the stable FP and this transition is discontinuous (top right); finally for gh > 2.0 the stable FP
becomes unstable, and only the chaotic attractor remains; this transition is continuous (bottom right).

the following two equations for C0,∗
h and α∗r

F(gh, α∗r ,C
0,∗
h ) = 0, (74)

∂F(gh, αr,C0
h)

∂C0
h

RRRRRRRRRRRα∗r,C0,∗
h

= 0. (75)

The details of solving these equations are provided in
Appendix E.

Fig. 6a,b shows the DMFT prediction for the bifurca-
tion curve α∗r,DMFT (gh), and the corresponding variance

at the bifurcation point C0,∗
h (red curves). We note two

salient points: i) the DMFT bifurcation curve is always
above the fixed-point bifurcation curve (black, in Fig.
6a) and ii) the lower critical value of gh which permits a
dynamical transition (dashed green curve in Fig. 6a,b) is
smaller than the corresponding fixed-point critical value
of

√
2. Indeed, in Appendix E, we show the following

condition for the dynamical transition

condition for dynamical transition:
√

8

3
< gh ≤ 2 and αr > α∗r,DMFT (gh), (76)

and at the right limit gh → 2−, we find
√

12 = α∗r,DMFT (2) > α∗r,FP (2) =
√

8. (77)

The DMFT prediction for the dynamical bifurcation
agrees well with the full network simulations. In Fig.
6c we see that the maximum Lyapunov exponent experi-
ences a discontinuous transition from a negative value
(network activity decays to fixed-point) to a positive
value (activity is chaotic) at the critical value of αr pre-
dicted by the DMFT (dashed vertical lines).

C. Nature of the dynamic transition

We now address the question of what happens to the
network activity across the dynamic transition. We al-
ready alluded to the discontinuous appearance of a time-
varying state in Fig. 6c, where the maximum Lyapunov
exponent jumps from a negative value to a positive value.
This is indeed the case. A dynamical state spontaneously
emerges across the transition, which has the characteris-
tics a chaotic attractor with a punctured hole (a stable
FP) that is a sink. The presence of the stable FP means
that the dynamical state is not strictly a chaotic attrac-
tor but rather a “chaotic set”; however, when we increase
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FIG. 7. Transient times at the bifurcation transition Transient times(τT , relative to τh) as a function of gh, αr and system
size N Dashed plot lines correspond to situations where αr < α

∗

r,DMFT (gh). Dashed vertical lines are critical values of αr or gh
(a) τT vs. N for gh = 1.775 (b) τT vs. gh for N = 500; dashed line indicated gh such that α∗r,DMFT (gh) = 40. (c) τT vs. αr for
gh = 1.775; dashed vertical line is α∗r,DMFT (1.775). (d) τT vs. gh for αr = 30; dashed line is gh such that α∗r,DMFT (gh) = 30.
(e) τT vs. N for αr = 30; dashed plot lines correspond to situations where 30 < α∗r,DMFT (gh). (f) τT vs. αr for N = 500; dashed
vertical line is α∗r,DMFT (1.85) Transient times are averaged over 2000 instances of random networks.

gh above 2.0, the chaotic set smoothly transitions into a
chaotic attractor once the stable FP disappears. We can
also see the chaotic nature of the dynamical state by look-
ing at the full Lyapunov spectrum across the transition
(Fig. 6d inset), and we see that the full spectrum un-
dergoes a discontinuous jump across the transition (red
to green). Moreover, we can estimate the dimension of
the chaotic attractor by calculating an upper-bound DA

on the dimension according to a conjecture by Kaplan
& Yorke [57]. The Kaplan-Yorke upper bound for the
attractor dimension DA is given by

DA =M + ∑
M
i=1 λi

∣λM+1∣
where M = max

j
{
j

∑
i=1

λi ⩾ 0} , (78)

where λi are the rank-ordered Lyapunov exponents. We
see in Fig. 6d that the attractor dimension jumps from
zero to a finite value across the transition (dashed line).
The attractor dimension also appears to be extensive in
the system size (data not shown). Thus, the dynamical
transition is characterized by the spontaneous appear-
ance of a chaotic set.

As we mentioned above, the zero FP is still stable
across the dynamical transition and coexists with the
chaotic set. For finite systems, the dynamics will even-
tually flow into the zero FP after chaotic transients. To
see this, we study the behavior of transient activity as a
function of system size. If the picture of a chaotic attrac-
tor with a punctured hole is valid, we expect the tran-
sient activity to be chaotic and eventually flow into the
fixed-point. Moreover, above the dynamical transition,
we expect this transient time to scale with the system
size, and in the infinite system size limit, the transient
time should diverge in spite of the fact that stable the
fixed-point still exists. This is because the volume of the
basin of attraction of the fixed-point relative to that of
the chaotic set will vanish as N →∞.

In Fig. 7c,d we do indeed see that the transient time
for a fixed gh scales with system size (Fig. 7c) once αr is
above the transition (dashed line). Conversely, for a fixed
αr, the transients scale with system size once gh crosses
the value for which the (fixed) αr is critical (Fig. 7d).
If αr is below the critical value then there is no scaling
of transient time with system size (see Fig. 7a,e dashed
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lines). Above the transition for a fixed gh the transient
time also increases with increasing αr (Fig. 7a,f) consis-
tent with the observation in Fig. 6d that the attractor
dimension increases with αr beyond the critical value.
Once gh becomes larger than gc = 2.0, the stable fixed-
point becomes unstable; however, the chaotic attractor
when it exists, transitions smoothly across the gh = 2.0
line, as can be seen in Fig. 4c (αr = 20).

The picture of the transition that emerges is summa-
rized in the schematic in Fig. 6e: when gh < 2.0 the zero
fixed-point is stable. Moreover, when

√
2 < gh ≤ 2, and

αr crosses α∗r,FP , unstable fixed-points spontaneously ap-

pear in the phase space (the FP transition) without any
salient dynamical signatures. On increasing αr further,
a dynamical state with chaotic transients and stable FP,
discontinuously appears once αr crosses α∗r,DMFT (the

DMFT transition), provided
√

8/3 < gh < 2.0. This co-
existence phase – with the chaotic activity and the sta-
ble fixed-point – exhibits long chaotic transients whose
lifetime scales with the system size. On increasing gh,
with fixed αr, the chaotic set smoothly varies across the
gh = 2.0 transition and becomes a chaotic attractor once
the stable FP disappears (if αr < α∗r,DMFT , then a chaotic

attractor appears continuously).

VIII. BIASES PRODUCE NON-TRIVIAL
FIXED-POINTS AND CONTROL THEIR

STABILITY

We have thus far described the salient dynamical as-
pects for the gated RNN in the absence of biases. Here
we describe the role of the biases βh (bias of the acti-
vation φ) and βr (bias of the output gate σr). We first
note that when βh = 0, zero is always a fixed-point of the
dynamics, and the zero fixed-point is stable provided

−1 + φ′(0)σr(0) < 0 (79)

where φ(x) = tanh(ghx + βh). This gives the familiar
gh < 2 condtion when βr = 0 [62]. Thus, in this case,
there is an interplay between gh and βr in determining
the leading edge of the Jacobian around the zero fixed-
point, and thus its stability. In the limit βr → −∞ the
leading edge retreats to −τ−1

r . When βh > 0, zero cannot
be a fixed-point of the dynamics. Therefore, βh facilitates
the appearance of non-zero fixed-points, and both βr and
βh will determine the stability of these non-zero fixed-
points.

To gain some insight into the role of βh in generating
fixed-points, we treat the mean-field FP equations (eq.
19) perturbatively around the operating point gc where
the zero fixed-point becomes unstable (eq. 79). For small
βh and ε = gh − gc, we can express the solution ∆h as a
power series in ε, and we see that to leading order the

fixed-point variance behaves as (details in Appendix D 1):

∆h ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

βh + ε
g2
c(2 − g2

ca1)
g2
ca1 < 2

(g2
ca1 − 2) f1 + ε ⋅ f2 g2

ca1 > 2

(80)

where a1 =
α2
r

16
[φ(1)

0 (βr/2)2 + φ0(βr/2)φ(2)
0 (βr/2)] (81)

where φ0 ≡ tanh and f2(αr, βr) and f2(αr, βr) are con-
stant functions w.r.t ε. Therefore, we see that the bias βh
gives rise to non-zero fixed-points near the critical point
which scale linearly with the bias. In Fig. 8e, we show
this linear scaling of the solution for the case when βh = ε,
and we see that the prediction (lines) matches the true
solution (circles) over a reasonably wide range.

More generally, away from the critical gc, an increas-
ing βh gives rise to fixed-point solutions with increasing
variance, and this can arise continuously from zero, or it
can arise by stabilizing an unstable, time-varying state
depending on the value of βr. In Fig. 8a we see how
the ∆h behaves for increasing βh for different βr, and
we can see the stabilizing effect of βh on unstable solu-
tions by looking at its effect on the leading spectral edge
(Fig. 8b). In Fig. 8c, we see that an increasing βr also
gives rise to increasing ∆h. However in this case, it has a
destabilizing effect by shifting the leading spectral edge
to the right. In particular, when βh = 0, increasing βr
destabilizes the zero fixed-point and give rise to a time-
varying solution. We note that when βh = 0, varying βr
cannot yield stable non-zero FPs. The combined effect
of βh and βr can been seen in Fig. 8f where the non-zero
solutions to the left of the orange line indicate unstable
(time-varying) solutions. We have chosen the parameters
to illustrate an interesting aspect of the biases: in some
cases, increasing βh can have a non-monotonic effect on
the stability, wherein the solution becomes unstable with
increasing βh and is then eventually stabilized for suffi-
ciently large βh.

IX. PHASE DIAGRAM FOR THE GATED RNN

As we have seen above, the gated RNN exhibits a rich
array of qualitatively different states. Here, we summa-
rize the key aspects of these different phases and the
critical lines separating them. The key parameters de-
termining the critical lines and the phase diagram are
the activation and output-gate gains and the associated
biases: (gh, βh, αr, βr). The update gate does not play a
role in determining the critical lines; however, it can have
a strong effect on the dynamical aspects of the states near
the critical lines. As we will see below, there are macro-
scopic regions of the parameter space adjacent to the crit-
ical lines (on the unstable/chaotic side) where the states
can be made marginally stable in the limit of αz → ∞.
We first begin with the case when there are no biases,
and subsequently describe the role of biases.
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FIG. 8. The role of biases (a) FP solutions as a function of increasing βh; different shades of green correspond to different
values of βr. Dashed lines correspond to FP solutions that are unstable (time-varying states). (b) The leading edge of the
spectrum corresponding to the FP solutions calculated in (a); the FP solution is unstable when the leading edge is positive.
(c) similar to (a) but for βr; different shades of blue correspond to different values of βh. (d) similar to (b) but for βr. (e) FP
solutions near critical gc where the zero FP becomes unstable (circles) compared with the perturbative solution predicted by
eq. 80 (solid lines). (f) FP solution as a function of βr and βh. Orange line indicates stability line – i.e. regions on top of the
orange line correspond to unstable/time-varying states.
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FIG. 9. Phase diagram for the gated RNN without biases

A. Phases and critical lines without biases

We can summarize the phase diagram without biases
in the 2-D parameter space characterized by the gains for
the activation and the output-gate (gh, αr). A salient fea-
ture of the network without biases are the discontinuous
bifurcation transitions described in Sec. VII. In Fig. 9,
we see that when gh is below 2.0 and αr < α∗r,FP , the zero-

fixed point is the only solution (region 1). On crossing

the fixed-point bifurcation line (green line, Fig. 9), there
is a spontaneous proliferation of unstable fixed-points in
the phase space (region 2). This is, however, possible

only when gh >
√

2. This proliferation of fixed-points is
not accompanied by any obvious dynamical signatures.

However, if
√

8/3 < gh < 2, we can increase αr further
to cross a second discontinuous transition where a dy-
namical state spontaneously appears featuring the coex-
istence of chaotic activity and a stable fixed-point (region
3). This phase is characterized by long, chaotic transient
activity which eventually flows into the fixed-point at a
time that scales with the system size. When gh is in-
creased beyond the critical value of 2.0, the stable fixed-
point becomes unstable for all αr, and the nonattracting
chaotic set, responsible for the chaotic transients, varies
continuously across this transition and becomes a chaotic
attractor – if there was no chaotic set for gh = 2−, then a
chaotic attractor appears continuously from 0 for gh = 2+.
This region is characterized by chaotic activity with an
extensive attractor dimension. All these critical lines are
determined by gh and αr, and αz has no explicit role;
however, for large αz there is a large region of the pa-
rameter space on the chaotic side of the chaotic transi-
tion that can be made marginally stable (thatched region
in Fig. 9; determined from eq. 36).
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FIG. 10. How the biases alter the transition between sta-
bility and chaos (left) Critical lines indicating boundaries for
stability (solid lines) or marginal stability (dashed lines) for
different values of βh. (right) Similar to the left panel but for
different values of βr.

B. Role of biases

As discussed in Sec. VIII, the main feature of the
biases is facilitating non-zero fixed-point solutions and
determining the leading edge of the spectral curve, and
thus controlling the stable-to-chaos transition. Another
key feature of biases is the suppression of the discontin-
uous bifurcation transition observed without biases. We
note that even in the presence of biases it is possible to
have small regions of the parameter space with bifurca-
tions; however, we leave a detailed study of biases and
bifurcations for future work. In the following, we con-
sider regimes without a bifurcation and thus the tran-
sition to chaos occurs (continuously) when the leading
spectral edge becomes unstable.

In Fig. 10, we look at how the critical line for the
chaotic transition, in the αr − gh plane, changes as we
vary βh (left panel) or βr (right panel). Positive values of
βr (“open” output gate) tend to make the transition line
less dependent on αr (Fig. 10, right panel), and negative
values of βr have a stabilizing effect by requiring larger
values of gh and αr to transition to chaos. As we have
seen in Sec. VIII, higher values of βh have a stabilizing
effect, requiring higher gh and αr to make the (non-zero)
stable fixed-point unstable. In both case, the critical lines
for marginal stability (Fig. 10, dashed lines) are also
influenced in a similar way.

We can also study the role of βh by plotting the phase
diagram in the βh − gh plane for a fixed αr, βr (Fig. 11
top). We see that larger values of βh require higher ac-
tivation gains to transition to chaos, and on the chaotic
side of the critical line, there is a region of the parameter
space that can become marginally stable for αz → ∞.
Such a stability-to-chaos transition (without marginal
stability) for the biases and gains of the activation has
also been observed in feed-forward networks [63]. In Fig.
11, bottom panels, we see how the stability-to-chaos tran-
sition is affected by αr (left panel) and βr (right panel).
Consistent with the discussion above, larger αr and βr
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FIG. 11. How the bias βh controls the transition between
stability and chaos (top) stability-to-chaos transition in the
gh −βh plane. Thatched region indicates unstable points that
can be made marginally stable in the limit αz → ∞. Here
αr = 1.0, βr = 0.0. (bottom) how the boundaries of stability
(solid lines) or marginal stability (dashed lines) change as we
vary αr (left) or βr (right).

have a destabilizing effect, requiring a larger βh to make
the system stable.

X. TRAINING RNNS: A DYNAMICAL
MEAN-FIELD THEORY OF GRADIENTS

In the previous sections, we discussed in detail the rich
nature of the autonomous dynamics of the gated RNN
with randomly distributed weights. Here we address the
issue of training these RNNs on a task – e.g. produc-
ing a desired trajectory – using gradient signals. The
problem of understanding how variations in the parame-
ters affect the trajectories of a dynamical system has its
roots in the control theory literature, and in particular,
the Adjoint Sensitivity method introduced by Pontrya-
gin and colleagues [43] provides an elegant framework
to study this. This method makes explicit the intimate
link between the forward/autonomous dynamics of a dy-
namical system and the characteristics of the gradients
of the trajectories with respect to the parameters. We
first describe the Adjoint formalism and how to calculate
gradients with it, and then show how to incorporate the
Adjoint formalism in the DMFT framework by using the
vanilla RNN as a model. Finally, we develop the Adjoint
DMFT for the gated RNN and derive predictions for the
statistics of gradients in the gated network.
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A. The Adjoint formalism

Let us suppose that the dynamics of the system are
described by the equation

ẋ(t) −G(x,θθθ, t) = 0 (82)

where θθθ denotes all the parameters – e.g., weights, gains
and biases for the gated RNN. x is the combined vector of
all the dynamical state variables – in the case of the gated
network, it will be the vector: x = (h,z, r). Furthermore,
let us denote by F a cost-functional that assigns scalar
scores to the trajectories of the network:

F(x(t),θθθ) = ∫
T

0
dt f(x,θθθ, t) (83)

For instance, the cost might be the distance from some
desired trajectory x∗ in which case an appropriate

cost functional would be F(x(t),θθθ) = T −1 ∫
T

0 dt ∥x(t) −
x∗(t)∥2. We are interested in the gradient of the cost
with respect to the parameters: dF/dθθθ. However, calcu-
lating this can be challenging due to the dx/dθθθ term. The
Adjoint method introduced by Pontryagin et al. circum-
vents this problem by introducing an auxiliary variable
governed by another, dual dynamics. The starting point
is the Lagrangian

L = ∫
T

0
dt f(x,θθθ, t) + ∫

T

0
dt λλλ(t)T (ẋ(t) −G(x,θθθ, t))

(84)

where λλλ(t) is a Lagrange multiplier for enforcing the dy-
namics. Along a trajectory of the dynamics we can ex-
press the gradient of the cost as

dF
dθθθ

=dL
dθθθ

= ∫
T

0
dt (∂f

∂θθθ
+ ∂f
∂x

dx

dθθθ
)+

∫
T

0
dt λλλ(t)T (−∂G

∂θθθ
− ∂G
∂x

dx

dθθθ
+ dẋ
dθ

) (85)

The dx/dθθθ terms in the expression for the gradient can
be eliminated by the following choice of λλλ(t): i) λλλ(T ) = 0
and ii) for t ≠ T , λλλ(t) satisfies

dλλλ(t)
dt

= −(∂G
∂x

)
T

λλλ(t) + ∂f
∂x

(86)

where ∂xG
T is the transpose (Adjoint) of the instanta-

neous Jacobian. The gradient is then given by

dF
dθθθ

= dL
dθθθ

= ∫
T

0
dt (∂f

∂θθθ
−λλλ(t)T ∂G

∂θθθ
) (87)

The steps to calculate the gradient of the cost with
respect to the parameters can be summarised as follows:
i) run the forward dynamics (eq. 82) to get the trajectory
x(t); ii) run the dynamics for λλλ (eq. 86) backwards in
time with the initial condition λλλ(T ) = 0 and the state-to-
state Jacobian ∂xG evaluated along the trajectory x(t)
and iii) with x(t) and λλλ(t) the gradient is given by eq.
87.

We now make a few observations:

- The equation for λλλ(t) (eq. 86) is linear and is gov-
erned by the same state-to-state Jacobian ∂xG that
characterizes the behaviour of the forward dynam-
ics.

- Empirically, training RNNs for machine learning
applications can be difficult because gradients van-
ish or explode rapidly with the training time T .
From eq. 87, we see that in typical cases where the
cost f does not explicitly depend on the param-
eters, the rapid growth/decay of the gradients is
dictated by the rapid growth/decay of λλλ(t), which
in turn is dictated by the asymptotic behaviour of
the linear ODE governed by ∂xG.

- Our Lyapunov analysis of the gated RNN shows
that the asymptotic behavior agrees well with the
local behavior predicted by the Jacobian spec-
trum, thus if we want finite (and O(1)) gradients
we should initialize networks where the Lyapunov
spectrum is flat; i.e., near critical lines and espe-
cially in the marginally stable regions. This pro-
vides a more fine-grained perspective on the em-
pirical observation that it is easier to train RNNs
initialized “at the edge of chaos” [10, 35–37].

Having highlighted the role of λλλ(t) in governing the
behavior of gradients, we show below how to incorpo-
rate the Adjoint dynamics of λλλ(t) into the DMFT, a tool
typically used to study the forward dynamics.

B. Adjoint DMFT for the vanilla RNN

We first outline how to incorporate gradients in the
MSRDJ formalism for the vanilla RNN, as it is simpler
than the gated RNN. The starting point for the Adjoint
DMFT is, again, the generating functional in the MSRDJ
formalism:

ZJ [b̂,b] = E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
i
N

∑
j=1
∫ b̂j(t)Txj(t)dt

⎞
⎠

⎤⎥⎥⎥⎥⎦
(88)

where xj(t) ≡ (hj(t), λj(t)) and b̂j(t) = (b̂hj , b̂λj ). The
measure in the expectation is a path integral over the
joint dynamics of h(t) and λ(t), and this can be expressed
by means of an action by a procedure similar to that used
for the forward dynamics:

ZJ = ∫ ∏
i

DhiDĥi∏
k

DλkDλ̂k e−iS (89)

S = i
N

∑
j=1
∫ dt (x̂j(t)Tbj(t)dt + b̂j(t)Txj(t)) + iSJ

(90)

SJ = i∫ dt [ĥ(t)T (ḣ(t) −G(h(t), J))+

λ̂λλ(t)T (λ̇λλ(t) + ∂hG(t)Tλλλ(t) − ∂hf(h(t))) ] (91)
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where, for the vanilla RNN, the function G describing
the e.o.m and the state-to-state Jacobian ∂hG are given
by

G(h(t), J) = −h(t) + Jφ(h(t)) (92)

∂hG(h(t), J) = −I + J [φ′] (93)

We are interested in the typical behavior of gradients
for large networks, so as before we disorder average over J
to get a joint description of the forward dynamics and the
adjoint dynamics as two, coupled stochastic differential
equations (details in Appendix F):

ḣ(t) = −h(t) + η(t) (94)

λ̇(t) = λ(t) − φ′(h(t))ξ(t) + ∂hf(h(t)) (95)

⟨η(t)η(t′)⟩ = Cφ (t, t′) , ⟨ξ(t)ξ(t′)⟩ = Cλ (t, t′) (96)

where η and ξ are independent Gaussian processes with
correlation functions Cφ and Cλ, that represent the
population-averaged correlation functions

Cλ (t, t′) = 1

N
λλλ(t)Tλλλ (t′) , Cφ (t, t′) = 1

N
φφφ(t)Tφφφ (t′)

(97)

From eq. 94 we find an ODE for the correlation function:

(∂t − 1) (∂s − 1)Cλ(t, s) =Cφ′(t, s)Cλ(t, s)
+ ⟨∂hf(t)∂hf (t′)⟩ (98)

This is the reduced DMFT description of the forward +
adjoint dynamics. We would like to use this to calculate
the DMFT prediction for the gradient statistics. To do
this, we see from eq. 87 that the mean-squared gradient
is given by

∥dF
dJ

∥ = 1

N2 ∑
i,j

⟨( dF
dJij

)
2

⟩ → ∫
T

0
dtds Cλ(t, s)Cφ(t, s)

(99)

Thus, for instance, we can use the DMFT prediction
for the gradient norm to examine conditions under which
the gradients will exceed some threshold magnitude.

C. Adjoint DMFT for the gated RNN

The Adjoint DMFT for the gated RNN follows along
similar lines as the vanilla RNN, but now we have a state
variable which is composed of three variables: xj(t) ≡
(hj(t), zj(t), rj(t)), and correspondingly we will need to
consider more correlation and response functions in the
DMFT. In this case, the dynamics for the Adjoint vari-
able λλλ = (λλλh,λλλz,λλλr) will be

λ̇λλ = D(t)Tλλλ + ∂xf (100)

where ∂xf = (∂hf , ∂zf , ∂rf), and D(t) is the state-to-state
Jacobian we considered in eq. 22.

After the saddle-point approximation, the single-site
mean-field equations look the same as eq. 11 for the
state variables (h, z, r), and the equations for the adjoint
variables are given by

λ̇h − λhσz(z) + φ′(h)σr(r)ξh + τ−1
z φ′(h)ξz

+τ−1
r φ′(h)ξr = ∂hf, (101)

λ̇z − λhσ′z(z)h − τ−1
z λz + λhσ′z(z)ζz = ∂zf, (102)

λ̇r − τ−1
r λr + φ(h)σ′r(r)ζr = ∂rf, (103)

where ζz,r and ξh,z,r are Gaussian processes whose cor-
relation functions are determined self-consistently:

⟨ξh(t)ξh (t′)⟩ = ⟨λh(t)σz (zt)λh (t′)σz (zt′)⟩ , (104)

⟨ξz(t)ξz (t′)⟩ = ⟨λz(t)λz (t′)⟩ , (105)

⟨ξr(t)ξr (t′)⟩ = ⟨λr(t)λr (t′)⟩ , (106)

⟨ζr(t)ζr (t′)⟩ = ⟨λh(t)σz (zt)λh (t′)σz (zt′)⟩ , (107)

⟨ζz(t)ζz (t′)⟩ = ⟨φ (ht)σr (rt)φ (ht′)σr (rt′)⟩ , (108)

⟨ζr(t)ζr (t′)⟩ = ⟨λh(t)σz (zt)λh (t′)σz (zt′)⟩⟩ . (109)

Using eq. 87, we see that the gradients of the loss in
the full network can be written as

dF
dJhij

= ∫ dt λhi σz (zi)φ (hj)σr (rj) , (110)

dF
dJzij

= ∫ dt λziφ (hj) , (111)

dF
dJrij

= ∫ dt λriφ (hj) , (112)

which leads to the following DMFT prediction for the
mean-squared gradients (i.e. the squared Frobenius norm
of the matrix of gradients):

⟨∥ dF
dJh

∥
2

⟩ = ∫ dtdt′Cλh (t, t′)Cφ (t, t′)Cσr (t, t′) ,

(113)

⟨∥ dF
dJz

∥
2

⟩ = ∫ dtdt′Cλz (t, t′)Cφ (t, t′) , (114)

⟨∥ dF
dJr

∥
2

⟩ = ∫ dtdt′Cλr (t, t′)Cφ (t, t′) . (115)

XI. DISCUSSION

Significance of gating interactions: We introduced
a gated RNN that naturally extends a canonical
continuous-time RNN model to include gating interac-
tions – a salient feature of the best-performing machine
learning RNNs [7] and single-neuron models with real-
istic biophysics [15, 25]. Gating improves performance
in machine learning tasks involving language modeling
[64], speech recognition [2], neural machine translation
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[65–67]. Prior work on gating has studied input-output
Jacobian in discrete-time RNNs assuming independent
weights at each time-step [68, 69]; this effectively makes
the model a feed-forward model. Our gated RNN prop-
erly deals with the highly recurrent nature of the dy-
namics and reduces to the classical RNN [16, 26] when
the gates are open. Moreover, when the dynamics are
discretized, the gated RNN closely resembles a widely-
used machine learning RNN [65]. Specifically, the main
differences from the machine learning RNN are that the
individual neurons integrate their inputs in a leaky fash-
ion instead of being directly affected by the input at each
time-step, and the single-neuron nonlinearity acts on the
state variable of each neuron instead of the total summed
inputs; these differences are not only more biologically re-
alistic but also endow the individual neurons with richer
dynamics [22]. We use our gated RNN to study the con-
sequences of gating on collective dynamics and gradients
that arise during training tasks.

Generation of slow modes by the update gate: The up-
date gate in our gated RNN functions as a dynamical
time-constant, which controls the rate at which a neuron
integrates its inputs. In single neuron models, such a dy-
namical time-constant has been shown to make the neu-
ron’s responses robust to time-warped inputs [15]. Fur-
thermore, normative approaches, requiring time-warp in-
variance in machine learning RNNs naturally imply the
existence of a gate that effectively acts as an adaptive
time-constant [70]. In our gated RNN, the sensitivity of
the update gate is a key control parameter, and more
sensitive (or switch-like) update gates lead to an accu-
mulation of slow modes in the dynamics. Indeed, the
emergence of slow modes with a spectrum of timescales
is likely useful for processing inputs which have depen-
dencies over a wide range of timescales [40, 71]. We show
that accumulation of these slow modes is a generic feature
of gating controlling the rate of integration; moreover,
our explicit choice of the gate sensitivity as a parameter,
suggests that this could be a potentially useful trainable
parameter for gated machine learning RNNs.

Marginal stability and line attractors: When the ac-
tivation gain gh is not too large, increasing the update
gate sensitivity (αz) leads to a drastic reduction in the
number of unstable directions of the local dynamics, and
in the limit it can make a system that was previously
unstable marginally stable. Thus, as discussed above,
there are extensive volumes in the parameter space ad-
jacent to the critical surfaces (on the chaotic side) which
can be made marginally stable by making the update
gate switch-like. Marginally stable models of biological
function have long been of interest with regard to their
benefits for information processing (c.f. [71] and refer-
ences therein); however, most models to achieve marginal
stability have required fine-tuning. Here, we show that
gating interactions can be another method to achieve
marginal stability in a robust way. One consequence of
marginal stability is the emergence of line attractors –
such line attractor dynamics have been shown to be ben-

eficial for a variety of computational functions such as
motor control [41, 42, 72], decision making [73] and audi-
tory processing [74]. Signatures of line attractors are also
empirically observed in successfully trained gated RNNs
on classifying text sentences [39]. We provide a theoret-
ical basis for how gating could produce line attractors
right at initialization.

Role of the output gate: The output gate has the ef-
fect of increasing the spectral radius when it becomes
more sensitive (larger αr). Thus, for chaotic states, more
sensitive output gates will cause them to become more
chaotic. For stable fixed-points, we show that making the
output gate more sensitive can lead to a novel, discon-
tinuous first-order transition to chaos. In addition to its
effect on autonomous dynamics, the output gate is likely
to have a significant role in controlling the influence of
external inputs on the intrinsic dynamics. This can be
seen by noting that when the output gate is close to zero,
the internal state will mostly integrate the input – as in-
tuited in the work introducing the discrete-time gated
RNN for machine learning applications [65]. This can be
functionally useful as a means of resetting the dynamics,
and erasing the dynamical traces from the past.

Transition to chaos in the gated RNN: In the classical
RNN, there is a single transition from quiescence to chaos
when the variance of the couplings exceeds a threshold
value [16]. This is a continuous transition where the cor-
relation timescale of the fluctuations diverges as we ap-
proach the transition from above. In the gated RNN,
we have two types of transitions to chaos. When αr is
smaller than

√
8 (no biases), there is a continuous transi-

tion to chaos when gh crosses the critical value 2.0. This
transition shares characteristics of the transition in the
classical RNN. However, there is a second discontinu-
ous transition when αr is increased in the quiescent re-
gion, which is characterized by the spontaneous emer-
gence of chaotic dynamics, along with the existence of
a stable fixed-point. Moreover, this transition also has
the characteristic that unstable fixed-points proliferate in
the phase space before the chaotic dynamics appear, and
thus it differs from the interesting result of Wainrib and
Touboul for additive RNNs, where these two phenomena
are tightly linked. This suggests that gating could facili-
tate a distinct mechanism for the transition to chaos and
could have important implications for the stability of bio-
logical neural networks where changes in effective gating
parameters could abruptly push the collective dynamics
from stable to strongly irregular.

From a practical perspective, studying the transition to
chaos is of interest in light of the observation that it is of-
ten easier to train RNNs initialized in the chaotic regime
but close to the critical points. This is often referred to
as the “edge of chaos” hypothesis [75–77]. This could be
a result of the long timescales present in the dynamics
at these operating points. Thus a theoretical character-
ization of the critical surfaces indicating the transition
to chaos in the parameter space is helpful for practition-
ers. We also note that the strong chaotic nature of the
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dynamics at the discontinuous chaotic transition seems
unlikely to be beneficial for training on natural tasks,
and it seems more appropriate to initialize near critical
lines corresponding to continuous transitions.

The role of biases: Initialization choices for biases
have a significant impact on task performance in machine
learning architectures [7, 32, 70, 78]. Here we studied how
biases affect the dynamics and qualitatively change the
phase diagram. The bias βh in the nonlinear activation
function has the effect of producing stable non-zero fixed
point solutions; indeed, for non-zero βh zero is no longer a
stationary point of the fixed-point equations. Moreover,
the biases βh and βr also control the leading edge of the
spectral curve, and thus affect the stability of the fixed-
points. Higher values of the βh, βr require higher values
of gh for a transition to chaos. Another interesting as-
pect of βh is that it suppresses the discontinuous chaotic
transition and thus the transition from the stable fixed-
point to the chaotic time-varying state is a continuous
one. From a functional perspective, biases could be used
to stabilize regions of the parameter space or engineer
stable fixed-points corresponding to memory states.

DMFT for gradient dynamics: In machine learning ap-
plications, the dynamics of RNNs at initialization is crit-
ical for training success. Thus studying the autonomous
dynamics of random RNNs, provides insights on train-
ing performance. Indeed, there is a deeper connection
between the forward dynamics and the behaviour of gra-
dients. The adjoint formalism introduced by Pontryagin
et al. [43] explicitly shows that the (exponential) growth
or decay of gradients is governed by the same state-to-
state Jacobian which governs the local behavior in the
forward dynamics. It is also known from empirical stud-
ies that one of the key difficulties in training RNNs is the
problem of exploding or vanishing gradients [3]; this sug-
gests that for efficient training we need gradients to be
stable and O(1). The theory suggests a way to achieve
this – train at parameter regimes where the Jacobian
eigenvalues are close to zero i.e. near critical lines. This
is a more fine-grained perspective on why it might be
easier to train at the “edge of chaos”. In the case of our
gated RNN, in addition to critical lines, we also know
that the update gate can make many parameter combi-
nations marginally stable. The arguments above would
then suggest that initializing in the marginally stable re-
gions should be beneficial for taming the gradients during
training.

We have combined the MSRDJ field theory formalism
to incorporate the adjoint framework for gradients, to to
formulate a DMFT for gradients. The DMFT is typically,
a tool typically used to study forward evolution, and our
extension allows the powerful techniques of the DMFT
to be used in the analysis of gradients. Fully exploring
this connection will be undertaken in future work.

Generality of techniques: We provide a self-contained
treatment of developing the DMFT for a RNN with mul-
tiplicative interactions, and we show how the mean-field
theory can be combined with techniques from random

matrix theory to calculate the spectral properties of the
state-to-state Jacobian. These theoretical frameworks
are general and powerful, and we expect that the self-
contained treatment provided here should enable ma-
chine learning researchers to extend these analyses to
other architectures and forms of gating, thereby provid-
ing a principled way to assess the impact of architectural
choices on the richness of dynamics and gradients.

A. Conclusions and outlook

Gating is a form of multiplicative interaction that is a
central feature of the best performing RNNs in machine
learning, and it is also a salient feature of biological neu-
rons. Prior theoretical work on RNNs has only consid-
ered RNNs with additive interactions. Here, we present
the first detailed study on the consequences of gating for
RNNs and show that gating can produce dramatically
richer behavior than classical RNNs.

Line attractors are widely-studied mechanisms for bio-
logical and computational functions involving long mem-
ory. To date, most of the models proposed for generating
line attractors require fine-tuning. We show how gating
can robustly generate line attractors without fine-tuning.

We provide the first detailed phase diagram for a RNN
with gating, thus delineating the dynamical phases in the
parameter space. This is highly relevant to practitioners
in machine learning, since choosing the initial parameters
for training is one of the critical determinants of training
outcome. The phase diagram provides a principled map
for doing so.

We identify a novel, discontinuous transition from a
stable to a chaotic state caused by gating. Such a phe-
nomenon has not been reported in classical RNNs. As a
practical consequence, this result suggests that the usual
heuristic of initializing RNN parameters at the edge-of-
chaos in machine learning needs to be reconsidered since
not all transition boundaries have beneficial properties –
especially with gating. This novel transition to chaos is
also relevant for stability of other large complex systems
with multiplicative interactions.

We have set down the first complete DMFT treatment
of gradients in large RNNs, by combining the adjoint sen-
sitivity method, widely used in control theory, with field-
theoretic methods. This paves the way for applying the
powerful techniques of DMFT – mostly used to study the
forward evolution of dynamics – to analyze gradient sig-
nals at initialization and during training. Our framework
also highlights the close link (via the Jacobian) between
forward dynamics and the behavior of gradients, and is
thus relevant to the broader set of questions surrounding
dynamical systems in biology that reorganize based on
gradient information.

Lastly, we would like to point out that the analytical
methods have been presented in a self-contained manner,
and it should be possible to adapt them to study other
large complex systems with gating interactions.
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Appendix A: Details of the Dynamical Mean-Field
Theory

In this section, we provide a detailed, self-contained
description of the dynamical mean-field theory for the
gated RNN using the Martin-Siggia-Rose-DeDomnicis-
Jansen formalism. We start with the equations of motion

(in vector form)

τz ż = − z + Jzφz(h), (A1)

τr ṙ = − r + Jrφr(h), (A2)

ḣ =σz(z) ⊙ (−h + [Jh (σr(r) ⊙ φh(h))]) , (A3)

where ⊙ stands for element-wise multiplication.
To write down the MSRDJ generating functional, let

us discretise the dynamics (in the Itô convention). Note
that in this convention the Jacobian is unity.

hi (t + 1) − hi (t) = σz,i(t){ − hi (t)+

∑
j

Jhijσr,j(t)φt (t) + bhi (t) }δt,

τz (zi (t + 1) − zi (t)) = { − zi (t) +∑
j

Jzijφ (t) + bzi (t) }δt,

τr (ri (t + 1) − ri (t)) = { − ri (t) +∑
j

Jrijφ (t) + bri (t) }δt,

where we have introduced external fields in the dynam-
ics {bhi (t)}, {bzi (t)} and {bri (t)}. The generating func-
tional is given by

ZJ [b̂,b] = E
⎡⎢⎢⎢⎢⎣
exp

⎛
⎝
i
N

∑
j=1

∑
t

b̂j(t)Txj(t)δt
⎞
⎠

⎤⎥⎥⎥⎥⎦
, (A4)

where b̂ = (b̂hj , b̂zj , b̂rj) ; b = (bhj , bzj , brj) and xj(t) ≡
(hj(t), zj(t), rj(t)); also, the expectation is over the dy-
namics generated by the network. Writing this out ex-
plicitly, with δ−functions enforcing the dynamics, we get
the following integral for the generating functional

ZJ [b̂,b] =∫ ∏
i,t

∏
k,t′
∏
m,t′′

dhi (t)dzk (t′)drm (t′′) ⋅ exp (i{∑
i,t

b̂hi (t)hi (t) + b̂zi (t) zi (t) + b̂ri (t) ri (t) }δt),

× δ(hi (t + 1) − hi (t) + {hi (t)σz,i(t) − σz,i(t)[∑
j

Jhijσr,j(t)φj(t)] − bhi (t) }δt),

× δ(zk (t′ + 1) − zk (t′) +
1

τz
{zk (t′) +∑

l

Jzklφl (t′) + bzk (t′) }δt),

× δ(rm (t′′ + 1) − rm (t′′) + 1

τr
{rm (t′′) +∑

n

Jrmnφn (t′′) + brm (t′) }δt). (A5)

Now, let us introduce the Fourier representation for
the δ−function; this introduces an auxiliary field variable,

which as we will see allows us to calculate the response
function in the MSRDJ formalism. The generating func-
tional can then be expressed as



24

ZJ [b̂,b] = ∫ ∏
i,t

∏
k,t′
∏
m,t′′

dhi (t)
dĥi(t)

2π
dzk (t′)

dẑk(t′)
2π

drm (t′′) dr̂m(t′′)
2π

, (A6)

× exp [ − i∑
i,t

ĥi(t)(hi (t + 1) − hi (t) − fh(hi, zi, ri)δt − bhi (t) δt) + i∑
i,t

b̂hi (t)hi (t) δt],

× exp [ − i∑
k,t′

ẑk(t)(zk (t′ + 1) − zk (t′) − fz(hk, zk)
δt

τz
− bzk (t′)

δt

τz
) + i∑

k,t′
b̂zk (t′) zk (t′) δt],

× exp [ − i ∑
m,t′′

r̂m(t′′)(rm (t′′ + 1) − rm (t′′) − fr(hm, rm) δt
τr
− brm (t′′) δt

τr
) + i ∑

m,t′′
b̂rm (t′′) rm (t′′) δt],

where the functions fh,z,r summarise the gated RNN dy-
namics

fh (hi, zi, ri) = σz,i(t)( − hi(t) +∑
j

Jhijσr,j(t)φj(t)),

fz (hk, zk) = −zk (t′) +∑
l

Jzklφl (t′) ,

fr (hm, rm) = −rm (t′′) +∑Jrmnφn (t′′) .

Let us now take the continuum limit δt → 0, and for-
mally define the measures Dhi = limδt→0∏t dhi(t). We
can then write the generating functional as a path inte-
gral

ZJ [b̂,b] = ∫ ∏
i

DhiDĥiDziDẑiDriDr̂i exp{ − S [x̂,x]

+ i∫ dt [b̂(t)Tx(t) + b(t)T x̂(t)]} (A7)

Where b̂ = (̂bhi , b̂zi , b̂ri ); x = (hi, zi, ri) and x̂ =
(ĥi, ẑi/τz, r̂i/τr), and the action S which gives weights
to the paths is given by

S [x̂,x] = i∑
i
∫ dt ĥi(t)[∂thi(t) − fh(hi, zi, ri)]

+ i∑
k
∫ dt ẑk(t)[∂tzk(t) −

fz(hk, zk)
τz

]

+ i∑
k
∫ dt r̂m(t)[∂trm(t) −

fr(hm, rm)
τr

] (A8)

The functional is properly normalised, so ZJ [0,b] = 1.
We can calculate correlation functions and response func-
tions by taking appropriate variational derivatives of the

generating functional Z, but first we address the role of
the random couplings.

Disorder Averaging:

We are interested in the typical behaviour of ensembles
of the networks, so we work with the disorder-averaged
generating functional Z; ZJ is properly normalised, so
we are allowed to do this averaging on ZJ . Averaging
over Jhij involves the following integral

∫ dJhij

√
N

2π
exp

⎧⎪⎪⎨⎪⎪⎩
−
N (Jhij)

2

2
+

i ⋅ Jhij ∫ dt ĥi(t)σz,i (t)φj (t)σr,j (t)} ,

which evaluates to

exp{−(1/2N) ⋅ ( ∫ dt ĥi(t)σz,i (t)φj (t)σr,j (t) )
2} and

similarly for Jz and Jr we get terms

exp{−(1/2N) ⋅ (∫ dt ẑk(t)φl (t) )
2
τ−2
z } ,

exp{−(1/2N) ⋅ (∫ dt r̂m(t)φn (t) )2
τ−2
r } .

The disorder-averaged generating functional is then given
by

Z[b̂,b] = ∫ ∏
i

DhiDĥiDziDẑiDriDr̂i exp{ − S [x̂,x]

+ i∫ dt [b̂(t)Tx(t) + b(t)T x̂(t)]} (A9)

where the disorder-averaged action S is given by
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S [x̂,x] = i∑
i
∫ dt ĥi(t)(∂thi(t) + hi(t)σz,i(t)) +

1

2N
∑
i,j

(∫ dt ĥi(t)σz,i(t)φj(t)σr,j(t))
2

+ i∑
k
∫ dt ẑk(t)(∂tzk(t) +

zk(t)
τz

) + 1

2N
∑
k,l

(∫ dt
ẑk(t)
τz

⋅ φl(t))
2

+ i∑
m
∫ dt r̂m(t)(∂trm(t) + rm(t)

τr
) + 1

2N
∑
m,n

(∫ dt
r̂m(t)
τr

⋅ φn(t))
2

(A10)

With some foresight, we see the action is extensive in
the system size, and we can try to reduce it to a single-
site description. However, the issue now is that we have
non-local terms (e.g. involving both i and j), and we can
introduce the following auxiliary fields to decouple these
non-local terms

Cφσr (t, t′) ∶=
1

N
∑
i

φi (t)φi (t′)σr,i (t)σr,i (t′) ,

Cφ (t, t′) ∶= 1

N
∑
k

φk (t)φk (t′) .

(A11)

To make the C’s free fields that we integrate over, we
enforce these relations using the Fourier representation
of δ functions with additional auxiliary fields:

δ(NCφσr (t, t′) −∑
i

φi (t)φi (t′)σr,i (t)σr,i (t′) ) =

∫
N

π
dĈφσr(t, t′) exp [ − i

2
Ĉφσr(t, t′)(N ⋅Cφσr(t, t′)

−∑
i

φi (t)φi (t′)σr,i (t)σr,i (t′) )]

δ(NCφ (t, t′) −∑
k

φk (t)φk (t′) ) = ∫
N

π
dĈφ(t, t′)

exp [ − i

2
Ĉφ(t, t′)(N ⋅Cφ(t, t′) −∑

k

φk (t)φk (t′) )]

this allows us to make the following transformations to
decouple the non-local terms in the action S

1

2N
∑
i,j

(ĥi(t)σz,i (t)φj (t)σr,j (t))
2
Ð→

1

2
∑
i
∫ dt dt′ ĥi (t)σz,i (t)Cφσr (t, t′) ĥi (t′)σz,i (t′)

1

2N
∑
k,l

(∫ dt
ẑk(t)
τz

⋅ φl(t))
2

Ð→

1

2
∑
k
∫ dt dt′

ẑk(t)
τz

Cφ (t, t′) ẑk(t
′)

τz

1

2N
∑
m,n

(∫ dt
r̂m(t)
τr

⋅ φn(t))
2

Ð→

1

2
∑
m
∫ dt dt′

r̂m(t)
τr

Cφ (t, t′) r̂m(t′)
τr

We see clearly that the Cφσr and Cφ auxiliary fields
which represent the (population averaged) φσr −φσr and
φ − φ correlation functions have decoupled the sites by
summarising all the information present in the rest of
the network in terms of two-point functions; two different
sites interact only by means of the correlation functions.
The disorder-averaged generating functional can now be
written as

Z[b̂,b] = ∫ DĈDC exp ( −N ⋅ L[Ĉ,C; b̂,b]) (A12)

L = i

2
∫ dtdt′ [C (t, t′)T Ĉ (t, t′) ] −W [Ĉ,C; b̂,b]

exp (N ⋅W ) = ∫ ∏
i

DhiDĥiDziDẑiDriDr̂i×

exp{i∫ dt[b(t)T ĥ(t) + b̂(t)Th(t)] − Sd [ĥ,h;{C, Ĉ}]}

where C = (Ch,Cz,Cr) and Ĉ = (Ĉh, Ĉz, Ĉr). The site-
wise decoupled action, Sd only contains terms involving
a single site (and the C fields). So, for a given value of

Ĉ and C, the different sites are decoupled and driven by
the site-wise action

Sd [ĥ,h;{C, Ĉ}] = i∫ dt [ĥ(t)T∂th(t) + ĥτ(t)Th(t)]

+ 1

2
∫ dt dt′ ĥτ(t)T DC(t, t′) ĥτ(t′)

− i

2
∫ dt dt′ Sx(t)T DĈ(t, t′) Sx(t′) (A13)

where

ĥτ(t) = (ĥiσz,i, ẑi/τz, r̂i/τr)
ĥ(t) = (ĥi, ẑi, r̂i)
Sx = (φiσr,i, φi, φi)
DC(t, t′) = Diag[Cφσr(t, t′),Cφ(t, t′),Cφ(t, t′)]
DĈ(t, t′) = Diag[Ĉφσr(t, t′), Ĉφ(t, t′), Ĉφ(t, t′)]
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Saddle-point approximation for N →∞
So far, we have not made any use of the fact that we are

considering large networks. However, noting that N ap-
pears in the exponent in the expression for the disorder-
averaged generating functional, we can approximate it
using a saddle-point approximation:

Z[b̂,b] ≃ eN ⋅L0[b̂,b;C0,C0] ∫ DQDQe−N ⋅L2[Q,Q,b,b]

we have approximated the action L in eq. A12 by its
saddle-point value plus a Hessian term : L ≃ L0 +L2 and
the Q,Q fields represent Gaussian fluctuations about the
saddle-point values C0, Ĉ0, respectively. At the saddle-
point the action is stationary w.r.t variations, thus, the
saddle-point values of C fields satisfy

C0φσr
(t, t′) = 1

N

N

∑
i=1

⟨φi (t)σr,i (t)φi (t′)σr,i (t′)⟩0

Ĉ0φσr
(t, t′) = 1

N

N

∑
i=1

⟨ĥi (t)σz,i (t) ĥi (t′)σz,i (t′)⟩0

=
δ2 ⟨σz,i (t)σz,i (t′)⟩0

δbi(t)δbi(t′)
= 0

C0φ (t, t′) = 1

N

N

∑
k=1

⟨φk (t)φk (t′)⟩0

Ĉ0φ (t, t′) = 0 (A14)

In evaluating the saddle-point correlation function in the
second line, we have used the fact that equal-time re-
sponse functions in the Itô convention are zero [29]. This
is perhaps the first significant point of departure from
previous studies of disordered neural networks, and forces
us to confront the multiplicative nature of the z−gate.
Here ⟨⋯⟩0 denotes averages w.r.t paths generated by
the saddle-point action, thus these equations are a self-
consistency constraint. With the correlation fields fixed
at their saddle-point values, if we neglect the contribu-
tion of the fluctuations (i.e. ignore L2) then the generat-
ing functional is given by a product of identical site-wise
generating functionals (c.f. eq. (8) in main text).

Z[b̂,b] = Z0[b̂,b]N (A15)

where the site-wise functionals are given by

Z0[b̂,b] = ∫ DhDĥDzDẑDrDr̂ ×

e
(i ∫ dt[b(t)T ĥ(t)+b̂(t)Th(t)]−Sd[h,h;{C0,0}]) (A16)

where C0 = (C0φσr
,C0φ).

The site-wise decoupled action is now quadratic with
the correlation functions taking on their saddle-point val-
ues. This corresponds to an action for each site con-
taining three scalar variables driven by Gaussian pro-
cesses. This can be seen explicitly by using a Hubbard-
Stratonovic transform which will make the action linear
at the cost of introducing three auxiliary Gaussian fields

ηh, ηz and ηr with correlation functions C0φσr
(t, t′),

C0φ (t, t′) and C0φ (t, t′), respectively. With this transfor-
mation, the action for each site corresponds to stochastic
dynamics for three scalar variables given by (same as eq.
(11) in the main text):

τz ż(t) = −z(t) + ηz(t),
τr ṙ(t) = −r(t) + ηr(t),
ḣ(t) = −σz(z) ⋅ h(t) + σz(z) ⋅ ηh(t).

The Gaussian processes, ηh, ηz, ηr have correlation func-
tions given by:

⟨ηh(t) ⋅ ηh (t′)⟩ = ⟨φ(t)σr(t) ⋅ φ (t′)σr (t′) ⟩,
⟨ηz(t) ⋅ ηz (t′)⟩ = ⟨φ(t) ⋅ φ (t′) ⟩,
⟨ηr(t) ⋅ ηr (t′)⟩ = ⟨φ(t) ⋅ φ (t′) ⟩.

The intuitive picture of the saddle-point approxima-
tion is as follows: the sites of the full network become
decoupled, and they are each driven by a Gaussian pro-
cesses whose correlation functions summarise the activity
of the rest of the network ‘felt’ by each site. It is possible
to argue about the final result heuristically, but one does
not have access to the systematic corrections that a field
theory formulation affords.

Appendix B: Random matrix theory for spectrum of
the Jacobian

In this section, we provide details of calculating the
bounding curve for the Jacobian spectrum for both fixed-
points and time-varying states. Our starting point is the
matrix Green’s function for the Hermitian problem:

G(η, λ, λ̄) =E [(η16N +H)−1] , (B1)

H = ( 0 λ −D
λ̄ −DT 0

) . (B2)

We can now use standard diagrammatic techniques in
random matrix theory to evaluate G using the self-
consistent Born approximation (SCBA), which is exact
in the limit N → ∞. We first decompose the Jacobian
into structured (A,L,R) and random parts (J ):

D =
⎛
⎜
⎝

−[σz] D 0
0 −τ−1

z 1 0
0 0 −τ−1

r 1

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+
⎛
⎜
⎝

[σz] 0 0
0 τ−1

z 1 0
0 0 τ−1

r 1

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L

×
⎛
⎜
⎝

Jh 0 0
0 Jz 0
0 0 Jr

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
J

⎛
⎜
⎝

[φ′σr] 0 [φσ′r]
[φ′] 0 0
[φ′] 0 0

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R

. (B3)

In the SCBA, G is given by a Dyson equation with the
self-energy functional Σ[G]

G−1 = G−1
0 −Σ[G], (B4)
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where the matrices on the right are defined in terms of
3N × 3N blocks:

G−1
0 =( η1 λ −A

λ̄ −AT η1
) , (B5)

Σ[G] =(LQ[RG22R
T ]L 0

0 RTQ[LTG11L]R
) , (B6)

and Q is a superoperator which acts on its argument
as follows:

Q[M] =
⎛
⎜
⎝

1
N

TrM11 0 0
0 1

N
TrM22 0

0 0 1
N

TrM33

⎞
⎟
⎠
. (B7)

At this point, we have presented all of the neces-
sary ingredients for computing the Green’s function, and
thus determining the spectral properties of the Jacobian.
These are the Dyson equation (B4), along with the free
Green’s function (B5) and the self-energy (B6). Most of
what is left is complicated linear algebra. However, in
the interest of completeness, we will proceed to unpack
these equations and give a detailed derivation of the main
equation of interest, the bounding curve of the spectral
density.

To proceed further, let us define a finer block structure
in terms of N ×N blocks as follows:

G̃11 ≡LTG11L =
⎛
⎜
⎝

G̃11 G̃12 G̃13

G̃21 G̃22 G̃23

G̃31 G̃32 G̃33

⎞
⎟
⎠
, (B8)

G̃22 ≡RG22R
T =

⎛
⎜
⎝

G̃44 G̃45 G̃46

G̃54 G̃55 G̃56

G̃64 G̃65 G̃66

⎞
⎟
⎠
, (B9)

and the traces of these block matrices as

g̃ij =
1

N
Tr[G̃ij]. (B10)

Then the blocks of the self-energy matrix in eq. B6 are
given by

Σ11 =
⎛
⎜
⎝

[σ2
z] g̃44 0 0
0 τ−2

z g̃55 0
0 0 τ−2

r g̃66

⎞
⎟
⎠
, (B11)

Σ22 =
⎛
⎜
⎝

[φ′σr]2 g̃11 + [φ′]2 (g̃22 + g̃33) 0 [φ′σr] [φσ′r] g̃11

0 0 0
[φ′σr][φσ′r]g̃11 0 [φσ′r]2g̃11

⎞
⎟
⎠
.

(B12)

These equations allow us to define self-consistent re-
lations between the various g̃ii. First, using the Dyson
equation we invert the block matrix to get

G = (η −Σ11 λ −A
λ̄ −AT η −Σ22

)
−1

. (B13)

The R.H.S of eq. B13 is a function of g̃ii, and then we can
read off the diagonal blocks to impose the self consistent
relations using

G̃11 = LTG11L G̃22 = RG22R
T , (B14)

g̃ii =
1

N
Tr[G̃ii] i ∈ 1, . . . ,6. (B15)

To simplify things we write the blocks of the Greens
functions, G̃ii, as the ratio of a numerator and a denom-
inator that is common to all the blocks. Let

r = [φ′σr], q = [φσ′r], a = [φ′], (B16)

and define

A = g̃11∣λτr + 1∣2r2 + (g̃22 + g̃33)a2C, (B17)

B = D2g̃55 + ∣λτz + 1∣2 [σ2
z] g̃44, (B18)

C = ∣λτr + 1∣2 − g̃11g̃66q
2. (B19)

Then the denominator can be written

Γ = ∣λτz + 1∣2∣λ + σz ∣2C −AB. (B20)

Now we look at the numerator terms Γi for all the
Green’s function blocks g̃ii:

Γ1 = σ2
z ∣λτz + 1∣2A, (B21)

Γ2 = D2A, (B22)

Γ3 = g̃11∣λτz + 1∣2∣λ + σz ∣2q2

− g̃11(g̃22 + g̃33)a2q2B, (B23)

Γ4 = g̃66∣λτz + 1∣2∣λ + σz ∣2q2

+ (∣λτr + 1∣2r2 − g̃66(g̃22 + g̃66)a2q2)B, (B24)

Γ5 = Γ6 = a2CB. (B25)

The numerators and denominator are all diagonal ma-
trices with real entries. The self-consistent equations im-
plied by eqns. B14,B15 for the six scalar variables g̃ii are
then given by

g̃ii = ⟨Γi
Γ

⟩ , (B26)

where we denote ⟨M⟩ ≡ N−1TrM for shorthand, and i
runs from 1 to 6. Solving these equations give us the g̃ii
as implicit functions of λ and are in general complicated.
However, the situation simplifies considerably when we
are looking for the spectral curve. In this case, we are
looking for all λ ∈ C that satisfy the self-consistent equa-
tions with g̃ii = 0.

It is important to note that on the spectral curve even
thought the g̃ii vanish, we encounter ratios like g̃22/g̃11 ≡
x2 and g̃33/g̃11 ≡ x3 which remain finite. Therefore, to
get the equation for the spectral curve we look at the
numerator terms in the limit of small g̃ii and eliminating
the ratios mentioned above to get an implicit equation in
the state variables and λ. The denominator simplifies to
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Γ = ∣1 + τrλ∣2 ∣1 + τzλ∣2 ∣σz + λ∣2 . (B27)

In this limit, we may take the trace and keeping non-
vanishing. In particular, the expression for g̃11 gives

1 = 1

g̃11

1

N
Tr

Γ1

Γ

= ⟨
σ2
z ∣λτz + 1∣2 (∣λτr + 1∣2r2 + (x2 + x3)a2C)

Γ
⟩ (B28)

And similarly for g̃22 and g̃33

x2 = ⟨
D2 (∣λτr + 1∣2r2 + (x2 + x3)a2C)

Γ
⟩ , (B29)

x3 = ⟨ ∣λτz + 1∣2∣λ + σz ∣2q2

Γ
⟩ . (B30)

Let us define now

γ1 = ⟨ σ2
zr

2

∣λ + σz ∣2
⟩ , (B31)

γ2 = ⟨ a2σ2
z

∣λ + σz ∣2
⟩ , (B32)

γ3 = ⟨ D2r2

∣λτz + 1∣2∣λ + σz ∣2
⟩ , (B33)

γ4 = ⟨ D2a2

∣λτz + 1∣2∣λ + σz ∣2
⟩ , (B34)

γ5 =
⟨q2⟩

∣λτr + 1∣2
. (B35)

Then we must solve the system of equations

1 = γ1 + (x2 + x3)γ2, (B36)

x2 = γ3 + γ4(x2 + x3), (B37)

x3 = γ5. (B38)

This system only has a solution when

(1 − γ1)(1 − γ4) = γ2 (γ3 + γ5) . (B39)

This expression depends on λ. Thus, the λ ∈ C for
which it is satisfied describes the boundary of the support
of the eigenvalue spectrum.

We get the spectral curve using eq. B26 by eliminating
g̃ii, and it is given by all λ ∈C that satisfy

{1 − ⟨ r2σ2
z

∣λ + σz ∣2
⟩}{1 − ⟨ D2a2

∣λτz + 1∣2∣λ + σz ∣2
⟩}

= ⟨ σ2
za

2

∣λ + σz ∣2
⟩{⟨ D2r2

∣λτz + 1∣2∣λ + σz ∣2
⟩ + ⟨q2⟩

∣λτr + 1∣2
} . (B40)

For fixed-points, we have D = 0, which makes γ3 = γ4 =
0, thus we get the simpler equation for the spectral curve
given in the main text (eq. 29):

1 = ⟨ r2σ2
z

∣λ + σz ∣2
⟩ + ⟨q2⟩

∣λτr + 1∣2
⟨ σ2

za
2

∣λ + σz ∣2
⟩ . (B41)

1. Jacobian spectrum for the case αr = 0

In the case when αr = 0, it is possible to express the
Green’s function (eq. 27) in a simpler form. Recall that,

G(λ, λ̄) = lim
η→i0+

1

3N
trG21(η, λ, λ̄). (B42)

Let B̃ = D2 + σ2
rσ

2
z ∣λτz + 1∣2. Then the Green’s function

is given by

G(λ, λ̄) =1

3
⟨ ∣λτz + 1∣2(λ̄ + σz)
∣λτz + 1∣2∣λ + σz ∣2 − ξ(λ, λ̄)a2B̃

⟩ , (B43)

+1

3
⟨
(λ̄ + τ−1

z ) (∣λ + σz ∣2 − ξ(λ, λ̄)a2σ2
z)

∣λ + τ−1
z ∣2∣λ + σz ∣2 − ξ(λ, λ̄)a2B̃

⟩ , (B44)

+ 1

3

1

λ + τ−1
r

, (B45)

where ξ(λ, λ̄) is defined implicitly to satisfy the equa-
tion

1 = ⟨ a2B̃

∣λτz + 1∣2∣λ + σz ∣2 − ξ(λ, λ̄)a2B̃
⟩ . (B46)

The function ξ(λ, λ̄) acts as a sort of order parameter
for the spectral density, indicating the transition on the
complex plane between zero and finite density µ. Out-
side the spectral support, λ ∈ Σc, this order parameter
vanishes ξ = 0 and the Green’s function is holomorphic

G(λ, λ̄) = 1

3
(⟨ 1

λ + σz
⟩ + 1

λ + τ−1
z

+ 1

λ + τ−1
r

) , (B47)

which of course indicates that the density is zero since
µ(λ) = ∂λ̄G(λ, λ̄). Inside the support λ ∈ Σ, the order
parameter ξ ≠ 0, and the Green’s function consequently
picks up non-analytic contributions, proportional to λ̄.
Since the Green’s function is continuous on the complex
plane, it must be continuous across the boundary of the
spectral support. This must then occur precisely when
the holomorphic solution meets the non-analytic solu-
tion, at ξ = 0. This is the condition used to find the
boundary curve above.

Appendix C: Spectral clumping and pinching in the
limit αz →∞

In this section we provide details on the accumulation
of eigenvalues near zero and the pinching of the leading



29

spectral curve (for certain values of gh) as the update
gate becomes switch-like (αz → ∞). To focus on the
key aspects of these phenomena, we consider the case
when the reset gate is off and there are no biases( αr =
0, βr,h,z = 0). Moreover, we consider a piece-wise linear
approximation – sometimes called “hard” tanh – to the
tanh function given by

φlin(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 x > 1/gh,
ghx ∣x∣ ≤ 1/gh,
−1 x < −1/gh.

(C1)

This approximation does not qualitatively change the na-
ture of the clumping.

In the limit, αz → ∞ the update gate σz becomes bi-
nary with a distribution given by

P (σz = x) = fzδ(x − 1) + (1 − fz)δ(x), (C2)

where fz = ⟨σz⟩ is the fraction of update gates that
are open (i.e. equal to one). Using this, along with the
assumption that D ≈ 0 – which is valid in this regime –
we can simplify the expression for the Green’s function
(eq. B43 - B47) to yield:

G(λ, λ̄) =1 − fz
λ

+ fz (1 − fh)
1

λ + 1
+ 1

λ + τ−1
z

+ (1 + λ̄)
g2
hσ (βr)2

I{∣λ∣<g2
h
σ(βr)2}, (C3)

where fh is the fraction of hard tanh activations that
are not saturated. In the limit of small τz and βr = 0, we
get the expression for the density given in the text:

µ(λ) =(1 − fz)δ(λ) + fz(1 − fh)δ(λ + 1) + 4

πg2
h

I{∣λ∣≤g2
h
/4}.

(C4)

Thus we see an extensive number of eigenvalues near zero.
Now, let us study the regime where αz is large but

not infinite. We would like to get the scaling behaviour
of the leading edge of the spectrum and the density of
eigenvalues contained in a radius δ around the origin.
We make an ansatz for the spectral edge close to zero

λ ∼ e−cαz
√

∆h , where c is a positive constant. With this
ansatz, the equation for the spectral curve reads

∫ Dz
σz(

√
∆z ⋅ z)2

∣λ0e−cαz
√

∆h + σz(
√

∆2
z)∣

2
= σr (βr)−2

⟨φ′(
√

∆h ⋅ h)2⟩
.

(C5)

In the limit of large αz and βr = 0 this implies

erfc( c√
2
) ≈ 4

⟨φ′(
√

∆h ⋅ h)2⟩
. (C6)

If this has a positive solution for c, then the scaling of the

spectral edge as λ ∼ e−cαz
√

∆h holds. Moreover, whenever

there is a positive solution for c we also expect pinching
of the spectral curve and in the limit αz → ∞ we will
have marginal stability.

Under the same approximation, we can approximate
the eigenvalue density in a radius δ around zero as

P (∣λ (D)∣ < δ) = 1

2πi
∮C

dz G(1 + z), (C7)

where we choose the contour along z = e−cαz
√

∆h+iθ for

θ ∈ [0,2π) and δ = e−cαz
√

∆h . In the limit of large αz
(thus δ ≪ 1) we get the scaling form described in the
main text :

P (∣λ (D)∣ < δ) ≈ 1

2
erfc(− log(δ)

αz
√

2∆h

) . (C8)

Appendix D: Perturbative solutions to the
mean-field equations

1. Perturbative solutions for the fixed-point
variance ∆h with biases

In this section, we derive the perturbative solutions for
the fixed-point variance ∆h with finite biases, near the
critical point where the zero fixed-point becomes unsta-
ble. Recall, that fixed-point variances are obtained by
solving

∆z ≡ ⟨z2⟩ = ∫ Dx φ(
√

∆hx)
2
= ∆r (D1)

∆h ≡ ⟨h2⟩ = ∫ DxDy φ (
√

∆hx)
2
σr(

√
∆ry)2 (D2)

The expansion we seek is perturbative in ∆h. So, ex-
panding the gating and activating functions about their
biases under the assumption ∆r ≈ g2

h∆h, we have a series
expansion to O(∆2

h)

⟨σr(
√

∆rx)2⟩
x
= a0 + a1g

2
h∆h + a2g

4
h∆2

h

a0 =
1

4
[1 + φ0(βr/2)]2 (D3)

a1 =
α2
r

16
[φ(1)

0 (βr/2)2+

φ0(βr/2)φ(2)
0 (βr/2) + φ(2)

0 (βr/2)] (D4)

a2 =
α4
r

256
[12φ

(2)
0 (βr/2)2 + 4φ0(βr/2)φ(4)

0 (βr/2)

+16φ
(1)
0 (βr/2)φ(3)

0 (βr/2) + φ(4)
0 (βr/2)] (D5)

where we have used the following identities involving
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the derivatives of tanh:

φ0(x) = tanh(x) (D6)

φ
(1)
0 (x) = 1 − φ0(x)2 (D7)

φ
(2)
0 (x) = − 2φ0(x) (1 − φ0(x)2) (D8)

φ
(3)
0 (x) = 2 (1 − φ0(x)2) (3φ0(x)2 − 1) (D9)

φ
(4)
0 (x) = − 8φ0(x) (1 − φ0(x)2) (3φ0(x)2 − 2) (D10)

This gives us to O(∆2
h)

∆h ≈ [c0 + c1∆h + c2∆2
h] ⟨σr(

√
∆rx)2⟩

x
(D11)

c0 = φ0(βh)2 (D12)

c1 = g2
h [φ(1)

0 (βh)2 + φ(2)
0 (βh)φ0(βh)] (D13)

c2 = g4
h [1

4
φ0(βh)φ(4)

0 (βh)+

φ
(1)
0 (βh)φ(3)

0 (βh) +
3

4
φ
(2)
0 (βh)2] (D14)

and therefore,

∆h ≈ (c0 + c1∆h + c2∆2
h) (a0 + a1g

2
h∆h + a2g

4
h∆2

h)
(D15)

To proceed further, we study the solutions to this equa-
tion for small deviations for a critical value of gh. Which
critical value should we use? Recall, that the zero fixed-
point becomes unstable when

−1 + φ′(0)σr(0) = 0 (D16)

Therefore, we expand around this operating point and
our small parameter ε = gh − gc where gc = σr(0)−1. We
make an ansatz that we can express ∆h as a power series
in ε,

∆h = εη (d0 + d1ε + d2ε
2) (D17)

where η is the exponent for the prefactor scaling, and
needs to be determined self-consistently. To get the scal-
ing relations for ∆h we need to expand the coefficients
in the Taylor series for ∆h in terms of ε. We note that
c0 = tanh(βh)2, and therefore, these approximations only
make sense for small βh. How small should βh be relative
to ε? We make the following ansatz:

βh = β0ε
δ (D18)

and thus if δ > 1/2 then c0 ∼ β2
0ε

2δ will increase slower
than ε.

We now express the coefficients for small βh :

c0 ≈ β2
0ε

2δ (D19)

c1 ≈ g2
h (1 − 2β2

h) (D20)

c2 ≈ g4
h (−2 + 17β2

h) (D21)

After solving Eqns. [D15-D19] self-consistently in
terms of the expansion parameter ε, we get the following
perturbative solution for δ ≤ 1 :

∆h ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2β0ε
δ

g2
c(2 − g2

ca1)
g2
ca1 < 2

(g2
ca1 − 2) f1 + ε ⋅ f2 g2

ca1 > 2

(D22)

where a1 =
α2
r

16
[φ(1)

0 (βr/2)2 + φ0(βr/2)φ(2)
0 (βr/2)]

(D23)

f2(αr, βr) and f2(αr, βr) are constant functions (w.r.t ε).
Therefore, we see a linear scaling with the bias βh.

2. Perturbative solutions for the fixed-point
variance ∆h in the bifurcation region with no biases

The perturbative treatment of the fixed-point solutions
in this case closely follows that described above. For
gh = 2 − ε, we can express ∆h as a power-series in ε :
∆h = c0 + c1ε + c2ε2, and look for a condition that allows
for a non-zero c0 corresponding to the bifurcation point.
Since we expect, ∆h to be small in this regime, we can
expand ∆r as :

∆r ≈ g2
h∆h − 2g4

h∆2
h +

17

3
g6
h∆3

h +O(∆4
h) (D24)

and similarly, we can also approximate

⟨σr(
√

∆rx)2⟩
x
≈ 1

4
[1 + α

2
r

4
∆r −

α4
r

8
∆2
r] (D25)

Now, equating coefficient of powers of ε, we get that ei-
ther c0 = 0 or

c0 =
3(α2

r − 8)
2(−136 + 24α2

r + 3α4
r)

(D26)

which is a valid solution when αr ≥
√

8. This is the
bifurcation curve limit near gh = 2−.

In the other limit, α∗r →∞ and ∆∗
h → 0. We can work

in the regime where αr
√

∆h ≫ 1 to see what values of gh
admit a bifurcation in the perturbative solutions. The
equation (to O(∆2

h) is given by :

∆h ≈
1

2
[g2
h∆h − 2g4

h∆2
h] (D27)

Thus, we get a positive solution for ∆h, when gh >
√

2
and to the leading order, the solution scales as

∆∗
h(

√
2
+
) ∼

g2
h − 2

2g4
h

for gh →
√

2
+

(D28)
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3. Ch(τ) near critical point

Here we study the asymptotic behaviour of Ch(τ) near
the critical point gh = 2.0 for small αz. For simplicity, we
set the biases to be zero. In this limit we can assume
that Ch(τ) and Cφ(τ) are small. Let us begin by ap-
proximating Cσz(τ).

We get up to O(C3
z ),

Cσz(τ) = g0 + g1Cz(τ) + g3Cz(τ)3, (D29)

where g0 =
1

4
, (D30)

g1 =
α2
z

16
− α

4
z

32
Cz(0) +

5α6
z

256
Cz(0)2, (D31)

g3 =
α6
z

384
− α8

z

192
Cz(0). (D32)

This can be obtained, for instance, by expanding σz(z(t))
and taking the Gaussian averages over the argument z(t)
in the steady-state. The relation between Cφ(τ) and
Cz(τ) , in general, does not have a simple form; how-
ever, when gh ∼ 2, we expect the relaxation time τR ≫ 1,
and therefore, we can approximate Cz(τ) ≈ Cφ(τ). We
can then approximate Cφ as

Cφ(τ) = g0 + g1Ch(τ) + g3Ch(τ)3, (D33)

where g0 = 0, (forβh = 0) (D34)

g1 = g2
h − 2g4

hCh(0) + 5g6
hCh(0)2, (D35)

g3 =
2

3
g6
h −

16

3
g8
hCh(0). (D36)

Note that this also gives us an approximation for
Cφ(0). Putting all this together, the equation govern-
ing Ch(τ):

[−∂2
τ +Cσz(τ)]Ch(τ) =

1

4
Cσz(τ)Cφ(τ), (D37)

becomes (up to O(C3
h))

∂2
τCh(τ) ≃ a1Ch(τ) + a2Ch(τ)2 + a3Ch(τ)3, (D38)

where a1 =
1

16
(4 − Γ) , (D39)

a2 =
α2
z

64
(4 − Γ)Γ, (D40)

a3 = −
g6
h

24
(D41)

Γ = g2
h − 2g4

hCh(0) + 5g6
hCh(0)2. (D42)

Integrating w.r.t τ gives

(∂τCh(τ))2 = 2(a1

2
Ch(τ)2 + a2

3
Ch(τ)3+

a3

4
Ch(τ)4 + const.). (D43)

The boundary conditions are

∂τCh(0) = 0 lim
τ→∞

∂τCh(τ) = 0. (D44)

The second condition implies the constant is 0. And, the
first condition implies

a1

2
+ a2

3
Ch(0) +

a3

4
Ch(0)2 = 0. (D45)

From this, we can solve for Ch(0) (neglecting terms
higher than quadratic) to get a solution that is perturba-
tive in the deviation ε from the critical point (gh = 2+ ε).
To the leading order the variance grows as

Ch(0) ≈
1

8
ε +O(ε2), (D46)

and the αz only enters the timescale-governing term a1 at
O(ε2) . At first, it might seem counter-intuitive that αz,
which effectively controls the dynamical time constant in
the equations of motion, should not influence the relax-
ation rate to leading order. However, this result is for the
dynamical behavior close to the critical point, where the
relaxation time is a scaling function of ε. Moving away
from this critical point, the relaxation time becomes fi-
nite, and the z− gate, and thus αz, should have a more
visible effect.

Appendix E: The DMFT bifurcation transition

In this section, we provide the details for calculating
the DMFT prediction for the bifurcation transition. As
in the main text, we assume αz = 0, and τr ≪ 1. The
DMFT equation is then given by

4∂2
τCh(τ) = Ch(τ) − Fφ (C0

h,Ch(τ))Fσr (C0
φ,Cφ(τ)) ,

(E1)

multiplying by ∂τCh(τ) and integrating from τ to ∞, we
get

2Ċh(τ)2 = (Ch)2

2
+ ∫

C0
h

0
dChFφ (Ch,C0

h)Fσr (Cφ,C0
φ) .
(E2)

Using the boundary condition that Ċh(0) = 0, we get
the equation for the variance stated in the main text (eq.
73 ).

To get the condition for the dynamical bifurcation
transition, we need to differentiate the L.H.S of eq. 73
(F (gh, αr,C0

h) ) w.r.t C0
h and set it to 0. This involves

terms like

∂Fψ(C0
h,C

0
h)

∂C0
h

;
∂Fψ(C0

h,0)
∂C0

h

. (E3)

We give a brief outline of calculating the first term. It’s
easier to work in the Fourier domain:

Fψ(C0
h,Ch) = E [∫

dk

2π
∫

dk′

2π
ψ̃(k)e−kz1 ψ̃(k′)e−k

′z2] ,

= ∫
dk

2π
∫

dk′

2π
ψ̃(k)ψ̃(k′) exp [−

C0
h

2
(k2 + k′2) −Ch(τ)kk′] .

(E4)
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This immediately gives us,

∂Fψ(C0
h,C

0
h)

∂C0
h

= ∫ Dx ψ(
√
c0hx)ψ

′′(
√
c0hx)+

∫ Dx ψ′(
√
c0hx)

2,

∂Fψ(C0
h,0)

∂C0
h

= ∫ Dx ψ(
√
c0hx)∫ Dx ψ

′′(
√
c0hx).

(E5)

Using this fact, we can calculate the derivative of
F (gh, αr,C0

h) as a straightforward (but long!) sum of
Gaussian integrals. We then numerically solve eqns.
74,75 to get the bifurcation curve shown in Fig. 6a.

Next, we provide an analytical description of the
asymptotic behaviour near the lower and higher criti-
cal values of gh. From the red curve in Fig. 6a we
know that as gh tends towards the lower critical value,
α∗r,DMFT → ∞ and C0

h → 0. So, we can approximate σr
as a step function in this limit, and Fσr is approximated
as

Fσr(C0
φ,Cφ) ≈

1

4
+ 1

2π
tan−1 ( x√

1 − x2
) , (E6)

where x ∶=Ch(τ)
Ch(0)

≈
Cφ(τ)
Cφ(0)

. (E7)

The DMFT equation then reads:

4ẍ = x − g2
hx(1

4
+ 1

2π
tan−1 ( x√

1 − x2
)) +O(Ch(0)2).

Integrating, this equation we get

2ẋ2 = x
2

2
(1 −

g2
h

4
) +

g2
h

8π
[(1 − 2x2) sin−1(x) − x

√
1 − x2] ,

which will have O(Ch(0)2) corrections. From the bound-

ary condition Ċh(0) = 0, we know that as x → 1 then
ẋ → 0. We thus find that these boundary conditions are
only consistent to leading order in Ch(0) when gh is equal
to its critical value:

g∗h =
√

8

3
. (E8)

Which indicates that Ch(0) must vanish as gh →√
8/3

+
.

In the other limit when gh → 2−, we see that α∗r remains

finite and C0,∗
h → 0. We assume that for gh = 2 − ε, C0

h
has a power-series expansion

C0
h = c0 + c1ε + c2ε2 + .... (E9)

We also expand Fφ and Fσr to O(Ch(0)2)

Fφ ≈ g2
hCh(τ) − 2g4

hC
0
h ⋅Ch(τ) + 5g6

h (C0
h)

2 ⋅Ch(τ),
(E10)

and look for values of αr which permit a non-zero value
for c0 in the leading order solutions to the DMFT. We
find that critical value of αr from the perturbative solu-
tion is given by

α∗r,DMFT (2) =
√

12. (E11)

Appendix F: Adjoint DMFT details

1. Adjoint DMFT for the vanilla RNN

In this section, we provide details for deriving the
Dynamical Mean-Field equations for the combined Ad-
joint+forward dynamics for the vanilla RNN (eq. 94-96).
We start with the generating function expressed using the
action S:

ZJ = ∫ ∏
i

DhiDĥi∏
k

DλkDλ̂k e−iS, (F1)

S = i
N

∑
j=1
∫ dt (x̂j(t)Tbj(t)dt + b̂j(t)Txj(t)) + iSJ ,

(F2)

SJ = i∫ dt [ĥ(t)t (ḣ(t) −G(h(t), J))+

λ̂λλ(t)T (λ̇λλ(t) + ∂hG(t)Tλλλ(t) − ∂hf(h(t))) ], (F3)

where, for the vanilla RNN, the function G describing
the e.o.m and the state-to-state Jacobian ∂hG are given
by

G(h(t), J) = −h(t) + Jφ(h(t)), (F4)

∂hG(h(t), J) = −1 + J[φ′]. (F5)

When we evaluate the disorder-averaged generating func-
tional Z̄, the terms in the action involving Jij are aver-
aged out as follows:

iJij ∫ dt (λiλ̂jφ′j − ĥiφj) →

− g2

2N
∫ dtdt′ (λiλ̂jφ′j − ĥiφj)t (λiλ̂jφ

′
j − ĥiφj)t′ (F6)

As before, we introduce population averaged fields to
make the expression local in the spatial indices. Let us
define,

Cλ(t, t′) =
1

N
λλλ(t)Tλλλ(t′), (F7)

Cφ(t, t′) =
1

N
φ(t)Tφ(t′), (F8)

Rλ(t, t′) =
1

N
λλλ(t)T ĥ(t′), (F9)

Rφ(t, t′) =
1

N
φ(t)T L̂(t′), L̂(t) = (λ̂λλ⊙ φ′)(t). (F10)

We enforce these constraints using delta functions and
the associated auxiliary fields Ĉλ, Ĉφ, R̂λ, R̂φ. The
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disorder-averaged generating functional becomes

Z̄ = ∫ [dM] exp(iN tr R̂TλRλ + iN tr R̂TSRS + i
N

2
tr ĈλCλ

+ i
N

2
ĈSCS − 2 trRλRS + iW [{M}]) (F11)

eiW [{M}] = ∫ [dX] exp(iS0 − iNR̂λ (t, t′) 1

N
λλλ(t)T ĥ (t′)

− iNR̂φ (t, t′) 1

N
φ(t)T L̂(t′) − iN

2
Ĉλ (t, t′) 1

N
λλλ(t)Tλλλ(t′)

− iN
2
Ĉφ (t, t′) 1

N
φ(t)Tφ(t′) − N

2
Cλ (t, t′) 1

N
L̂(t)T L̂(t′)

−N
2
Cφ (t, t′) 1

N
ĥ(t) ⋅ ĥ(t′)) , (F12)

where {M} stands for the set

{Cφ, Ĉφ,Cλ, Ĉλ,Rφ, R̂φ,Rλ, R̂λ}, {X} = {h, ĥ, λ, λ̂},
and the action S0 is given by

S0 =i∫ dt [ĥ(t)t (ḣ(t) + h(t)) ,

+ λ̂λλ(t)T (λ̇λλ(t) −λλλ(t) − ∂hf(h(t))) ]. (F13)

We see that the total action is extensive, and thus we
can perform a saddle-point approximation in the limit
N → ∞. Noting that in this limit Ĉφ = Ĉλ = 0 and that
the response functions R have a vanishing contribution,
we get a generating functional that is a product of single-
site generating functionals, where each site is driven by
two Gaussian noise processes:

Z̄0 =∫ [dhdλ] exp(iS0 −
1

2
Cλ (t, t′) L̂(t) ⋅ L̂(t′)

−1

2
Cφ (t, t′) ĥ(t) ⋅ ĥ(t′)) . (F14)

This single-site generating functional corresponds to the
coupled stochastic differential equations stated in the
main text ( eq. 94-96 ).

Appendix G: Calculation of maximal Lyapunov
exponent from RMT

Here we present the derivation for the mean squared
singular value of the susceptibility matrix for the gated
RNN with αz = 0, and βz = −∞. In this limit, σz = 1, and
the instantaneous Jacobian becomes the 2N ×2N matrix

Dt = −12N + ( J
r 0

0 Jh
)( 0 At

Qt Rt
) ≡ −12N + ĴSt,

(G1)

Qt = [φ(h(t)) ⊙ σ′r(r(t)] , At = [φ′(h(t))] , (G2)

Rt = [φ′(h(t)) ⊙ σr(r(t)] . (G3)

Let us define the quantity of interest

σ2
χ = ⟨ 1

2N
Tr (χ(t)χT (t))⟩ (G4)

= e−2t ⟨, 1

2N
Tr eĴŜteŜ

T
t Ĵ

T

⟩ , (G5)

where we have additionally defined Ŝt = ∫
t
dt′St, and

the integration is performed elementwise. Expanding the
exponentiated matrices and computing moments directly,
one finds that the leading order in N moments must have
an equal number of Ĵ and ĴT . Thus, we must evaluate

cn = ⟨ 1

2N
Tr [(Ĵ Ŝt)

n
(ŜTt ĴT )

n
]⟩ . (G6)

The ordering of the matrices is important in this ex-
pression. Since all of the Ĵ appear to the left of ĴT ,
the leading order contributions to the moment will come
from Wick contractions that are “non-crossing”- in the
language of diagrams, the moment will be given by a
“rainbow” diagram. Consequently, we may evaluate cn
by induction. First, the induction step. Define the ex-
pected value of the matrix moment

ĉn = ⟨(Ĵ Ŝt)
n
(ŜTt ĴT )

n
⟩ . (G7)

= ⟨Ĵ (Ŝt (Ĵ Ŝt)
n−1

(ŜTt ĴT )
n−1

ŜTt ) ĴT ⟩ (G8)

= ( an1 0
0 bn1

) +O(N−1). (G9)

We wish to determine an and bn. Next,define

gA = 1

N
Tr∫

t

dt′dt′′At′At′′ , (G10)

gQ = 1

N
Tr∫

t

dt′dt′′Qt′Qt′′ , (G11)

gR = 1

N
Tr∫

t

dt′dt′′Rt′Rt′′ . (G12)

Now we can directly determine the induction step at
the level of matrix moments by Wick contraction of the
rainbow diagram

ĉn = ⟨Ĵ Ŝt (Ĵ Ŝt)
n−1

(ŜTt ĴT )
n−1

ŜTt Ĵ
T ⟩ , (G13)

= ⟨Ĵ Ŝtĉn−1Ŝ
T
t Ĵ

T ⟩ +O(N−1), (G14)

= ( bn−1gA1 0
0 (an−1gQ + bn−1gR)1

) +O(N−1).

(G15)

This implies the following recursion for the diagonal ele-
ments of ĉn

an = gAbn−1, bn = gRbn−1 + gQan−1. (G16)

The initial condition is given by observing that ĉ0 = 1,
which implies a0 = b0 = 1. The solution to this recursion
relation can be written in terms of a transfer matrix



34

( an
bn

) = ( 0 gA
gQ gR

)
n

( 1
1
) , (G17)

which implies the moment cn = 1
2
(an + bn) is given by

cn =
1

2
(1 1) ( 0 gA

gQ gR
)
n

( 1
1
) . (G18)

To evaluate this, we use the fact that the eigenvalues
of the transfer matrix are

v± =
1

2
(gR ±

√
g2
R + 4gAgQ) , (G19)

which are real valued. The eigenvectors are

v± = (− v∓
gQ
,1) . (G20)

Then, defining l = (1,1), the moment can be written

cn =
1

2
lT (vn+v+v

T
+ + vn−v−v

T
− ) l, (G21)

= 1

2
(1 − v−

gQ
)

2

vn+ +
1

2
(1 − v+

gQ
)

2

vn− . (G22)

The final expression for the mean squared singular
value will then be

σ2
χ = e−2t

∞
∑
n=0

cn
(n!)2

. (G23)

After resumming this infinite series we wind up with
an expression in terms of the modified Bessel function

σ2
χ =

1

2
e−2t

⎡⎢⎢⎢⎢⎣
(1 − v−

gQ
)

2

I0(2
√
v+) + (1 − v+

gQ
)

2

I0(2
√
v−)

⎤⎥⎥⎥⎥⎦
.

(G24)

In the steady-state, we approximate these expres-
sions by assuming the correlation functions are time-
translation invariant. Thus, we may write

gR = ∫ dtdt′RtRt′ ≈ t2
1

t
∫ dτCR(τ) = t2τR, (G25)

and similarly for gQ and gA. Then the eigenvalues of
the transfer matrix become

v± = t2
1

2
(τR ±

√
τ2
R + 4τAτQ) . (G26)

At late times, using the asymptotic behavior of the
modified Bessel function, the moment becomes

σ2
χ ∼ exp (−2t + 2

√
v+) , (G27)

which gives the Lyapunov exponent

λL =
⎛
⎝
τR +

√
τ2
R + 4τAτQ

2

⎞
⎠

1/2

− 1. (G28)
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